10 40: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 10 | |
n = 10 | |
||
Line 44: | Line 44: | ||
coloured_jones_3 = <math>-q^{45}+3 q^{44}-q^{43}-4 q^{42}-2 q^{41}+13 q^{40}+3 q^{39}-26 q^{38}-10 q^{37}+50 q^{36}+25 q^{35}-83 q^{34}-59 q^{33}+129 q^{32}+111 q^{31}-173 q^{30}-194 q^{29}+216 q^{28}+296 q^{27}-240 q^{26}-417 q^{25}+247 q^{24}+536 q^{23}-225 q^{22}-653 q^{21}+191 q^{20}+741 q^{19}-138 q^{18}-796 q^{17}+69 q^{16}+828 q^{15}-14 q^{14}-803 q^{13}-66 q^{12}+768 q^{11}+110 q^{10}-669 q^9-177 q^8+580 q^7+195 q^6-445 q^5-218 q^4+336 q^3+196 q^2-216 q-173+132 q^{-1} +131 q^{-2} -70 q^{-3} -88 q^{-4} +30 q^{-5} +54 q^{-6} -11 q^{-7} -29 q^{-8} +3 q^{-9} +14 q^{-10} -2 q^{-11} -4 q^{-12} - q^{-13} +3 q^{-14} - q^{-15} </math> | |
coloured_jones_3 = <math>-q^{45}+3 q^{44}-q^{43}-4 q^{42}-2 q^{41}+13 q^{40}+3 q^{39}-26 q^{38}-10 q^{37}+50 q^{36}+25 q^{35}-83 q^{34}-59 q^{33}+129 q^{32}+111 q^{31}-173 q^{30}-194 q^{29}+216 q^{28}+296 q^{27}-240 q^{26}-417 q^{25}+247 q^{24}+536 q^{23}-225 q^{22}-653 q^{21}+191 q^{20}+741 q^{19}-138 q^{18}-796 q^{17}+69 q^{16}+828 q^{15}-14 q^{14}-803 q^{13}-66 q^{12}+768 q^{11}+110 q^{10}-669 q^9-177 q^8+580 q^7+195 q^6-445 q^5-218 q^4+336 q^3+196 q^2-216 q-173+132 q^{-1} +131 q^{-2} -70 q^{-3} -88 q^{-4} +30 q^{-5} +54 q^{-6} -11 q^{-7} -29 q^{-8} +3 q^{-9} +14 q^{-10} -2 q^{-11} -4 q^{-12} - q^{-13} +3 q^{-14} - q^{-15} </math> | |
||
coloured_jones_4 = <math>q^{74}-3 q^{73}+q^{72}+4 q^{71}-3 q^{70}+5 q^{69}-16 q^{68}+5 q^{67}+22 q^{66}-12 q^{65}+14 q^{64}-66 q^{63}+11 q^{62}+93 q^{61}-4 q^{60}+24 q^{59}-230 q^{58}-24 q^{57}+268 q^{56}+125 q^{55}+105 q^{54}-616 q^{53}-271 q^{52}+498 q^{51}+534 q^{50}+486 q^{49}-1190 q^{48}-945 q^{47}+510 q^{46}+1203 q^{45}+1425 q^{44}-1648 q^{43}-2023 q^{42}+q^{41}+1818 q^{40}+2866 q^{39}-1646 q^{38}-3136 q^{37}-1014 q^{36}+2039 q^{35}+4381 q^{34}-1153 q^{33}-3872 q^{32}-2167 q^{31}+1794 q^{30}+5480 q^{29}-399 q^{28}-4043 q^{27}-3094 q^{26}+1222 q^{25}+5924 q^{24}+385 q^{23}-3674 q^{22}-3610 q^{21}+459 q^{20}+5652 q^{19}+1077 q^{18}-2814 q^{17}-3639 q^{16}-395 q^{15}+4702 q^{14}+1538 q^{13}-1621 q^{12}-3121 q^{11}-1107 q^{10}+3258 q^9+1578 q^8-456 q^7-2156 q^6-1372 q^5+1758 q^4+1165 q^3+264 q^2-1103 q-1120+675 q^{-1} +583 q^{-2} +423 q^{-3} -371 q^{-4} -634 q^{-5} +171 q^{-6} +167 q^{-7} +268 q^{-8} -58 q^{-9} -252 q^{-10} +32 q^{-11} +9 q^{-12} +103 q^{-13} +7 q^{-14} -74 q^{-15} +12 q^{-16} -10 q^{-17} +25 q^{-18} +5 q^{-19} -17 q^{-20} +5 q^{-21} -3 q^{-22} +4 q^{-23} + q^{-24} -3 q^{-25} + q^{-26} </math> | |
coloured_jones_4 = <math>q^{74}-3 q^{73}+q^{72}+4 q^{71}-3 q^{70}+5 q^{69}-16 q^{68}+5 q^{67}+22 q^{66}-12 q^{65}+14 q^{64}-66 q^{63}+11 q^{62}+93 q^{61}-4 q^{60}+24 q^{59}-230 q^{58}-24 q^{57}+268 q^{56}+125 q^{55}+105 q^{54}-616 q^{53}-271 q^{52}+498 q^{51}+534 q^{50}+486 q^{49}-1190 q^{48}-945 q^{47}+510 q^{46}+1203 q^{45}+1425 q^{44}-1648 q^{43}-2023 q^{42}+q^{41}+1818 q^{40}+2866 q^{39}-1646 q^{38}-3136 q^{37}-1014 q^{36}+2039 q^{35}+4381 q^{34}-1153 q^{33}-3872 q^{32}-2167 q^{31}+1794 q^{30}+5480 q^{29}-399 q^{28}-4043 q^{27}-3094 q^{26}+1222 q^{25}+5924 q^{24}+385 q^{23}-3674 q^{22}-3610 q^{21}+459 q^{20}+5652 q^{19}+1077 q^{18}-2814 q^{17}-3639 q^{16}-395 q^{15}+4702 q^{14}+1538 q^{13}-1621 q^{12}-3121 q^{11}-1107 q^{10}+3258 q^9+1578 q^8-456 q^7-2156 q^6-1372 q^5+1758 q^4+1165 q^3+264 q^2-1103 q-1120+675 q^{-1} +583 q^{-2} +423 q^{-3} -371 q^{-4} -634 q^{-5} +171 q^{-6} +167 q^{-7} +268 q^{-8} -58 q^{-9} -252 q^{-10} +32 q^{-11} +9 q^{-12} +103 q^{-13} +7 q^{-14} -74 q^{-15} +12 q^{-16} -10 q^{-17} +25 q^{-18} +5 q^{-19} -17 q^{-20} +5 q^{-21} -3 q^{-22} +4 q^{-23} + q^{-24} -3 q^{-25} + q^{-26} </math> | |
||
coloured_jones_5 = |
coloured_jones_5 = | |
||
coloured_jones_6 = |
coloured_jones_6 = | |
||
coloured_jones_7 = |
coloured_jones_7 = | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
Line 53: | Line 53: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 40]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 20], X[5, 13, 6, 12], |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 40]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 20], X[5, 13, 6, 12], |
|||
X[7, 17, 8, 16], X[15, 19, 16, 18], X[19, 15, 20, 14], |
X[7, 17, 8, 16], X[15, 19, 16, 18], X[19, 15, 20, 14], |
||
X[13, 7, 14, 6], X[17, 9, 18, 8], X[9, 2, 10, 3]]</nowiki></ |
X[13, 7, 14, 6], X[17, 9, 18, 8], X[9, 2, 10, 3]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 40]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -4, 8, -5, 9, -10, 2, -3, 4, -8, 7, -6, 5, -9, |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 40]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, -4, 8, -5, 9, -10, 2, -3, 4, -8, 7, -6, 5, -9, |
|||
6, -7, 3]</nowiki></ |
6, -7, 3]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 40]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 12, 16, 2, 20, 6, 18, 8, 14]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 40]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 12, 16, 2, 20, 6, 18, 8, 14]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 40]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_40_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 40]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, 2, -1, 2, 2, -3, 2, -3, -3}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 40]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 40]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_40_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 40]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
SymmetryType, UnknottingNumber, ThreeGenus, |
||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
||
}</nowiki></ |
}</nowiki></code></td></tr> |
||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 2, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 40]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 8 17 2 3 |
|||
-21 + -- - -- + -- + 17 t - 8 t + 2 t |
-21 + -- - -- + -- + 17 t - 8 t + 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 40]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 + 3 z + 4 z + 2 z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 40]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 40], Knot[10, 103]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 3 z + 4 z + 2 z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 40]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 3 2 3 4 5 6 7 8 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 40], Knot[10, 103]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 40]], KnotSignature[Knot[10, 40]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{75, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 40]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 3 2 3 4 5 6 7 8 |
|||
-6 - q + - + 10 q - 11 q + 13 q - 12 q + 9 q - 6 q + 3 q - q |
-6 - q + - + 10 q - 11 q + 13 q - 12 q + 9 q - 6 q + 3 q - q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 40], Knot[10, 103]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 40], Knot[10, 103]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 40]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 -4 -2 2 4 6 8 12 14 16 |
|||
-1 - q + q - q + 3 q - q + 4 q + q + q - 3 q + 2 q - |
-1 - q + q - q + 3 q - q + 4 q + q + q - 3 q + 2 q - |
||
18 20 22 24 |
18 20 22 24 |
||
q - q + q - q</nowiki></ |
q - q + q - q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 40]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 4 4 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 40]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 4 4 |
|||
-6 3 2 2 z 3 z 4 z 4 z 3 z 3 z |
-6 3 2 2 z 3 z 4 z 4 z 3 z 3 z |
||
-1 - a + -- - 2 z - ---- + ---- + ---- - z - -- + ---- + ---- + |
-1 - a + -- - 2 z - ---- + ---- + ---- - z - -- + ---- + ---- + |
||
Line 113: | Line 194: | ||
-- + -- |
-- + -- |
||
4 2 |
4 2 |
||
a a</nowiki></ |
a a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 40]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 40]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 |
|||
-6 3 z 2 z 2 z 2 3 z z z 7 z |
-6 3 z 2 z 2 z 2 3 z z z 7 z |
||
-1 + a - -- + -- + --- + --- + a z + 4 z + ---- + -- + -- + ---- - |
-1 + a - -- + -- + --- + --- + a z + 4 z + ---- + -- + -- + ---- - |
||
Line 137: | Line 223: | ||
-- + ---- + ---- + ---- + ---- + ---- + ---- + ---- + -- + -- |
-- + ---- + ---- + ---- + ---- + ---- + ---- + ---- + -- + -- |
||
2 7 5 3 a 6 4 2 5 3 |
2 7 5 3 a 6 4 2 5 3 |
||
a a a a a a a a a</nowiki></ |
a a a a a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 40]], Vassiliev[3][Knot[10, 40]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 4}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 40]], Vassiliev[3][Knot[10, 40]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 4}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 40]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 2 1 4 2 q 3 5 |
|||
6 q + 5 q + ----- + ----- + ---- + --- + --- + 6 q t + 5 q t + |
6 q + 5 q + ----- + ----- + ---- + --- + --- + 6 q t + 5 q t + |
||
5 3 3 2 2 q t t |
5 3 3 2 2 q t t |
||
Line 150: | Line 246: | ||
11 5 13 5 13 6 15 6 17 7 |
11 5 13 5 13 6 15 6 17 7 |
||
2 q t + 4 q t + q t + 2 q t + q t</nowiki></ |
2 q t + 4 q t + q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 40], 2][q]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 3 -5 9 17 37 2 3 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 40], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 3 -5 9 17 37 2 3 4 |
|||
-44 + q - -- + q + -- - -- + -- - 14 q + 86 q - 70 q - 42 q + |
-44 + q - -- + q + -- - -- + -- - 14 q + 86 q - 70 q - 42 q + |
||
6 4 3 q |
6 4 3 q |
||
Line 164: | Line 265: | ||
22 23 |
22 23 |
||
3 q + q</nowiki></ |
3 q + q</nowiki></code></td></tr> |
||
</table> }} |
Latest revision as of 17:04, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 40's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3,10,4,11 X11,1,12,20 X5,13,6,12 X7,17,8,16 X15,19,16,18 X19,15,20,14 X13,7,14,6 X17,9,18,8 X9,2,10,3 |
Gauss code | -1, 10, -2, 1, -4, 8, -5, 9, -10, 2, -3, 4, -8, 7, -6, 5, -9, 6, -7, 3 |
Dowker-Thistlethwaite code | 4 10 12 16 2 20 6 18 8 14 |
Conway Notation | [222112] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{12, 8}, {1, 10}, {9, 11}, {10, 12}, {11, 7}, {8, 6}, {7, 2}, {3, 1}, {2, 5}, {6, 4}, {5, 3}, {4, 9}] |
[edit Notes on presentations of 10 40]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 40"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,10,4,11 X11,1,12,20 X5,13,6,12 X7,17,8,16 X15,19,16,18 X19,15,20,14 X13,7,14,6 X17,9,18,8 X9,2,10,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -4, 8, -5, 9, -10, 2, -3, 4, -8, 7, -6, 5, -9, 6, -7, 3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 12 16 2 20 6 18 8 14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[222112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 8}, {1, 10}, {9, 11}, {10, 12}, {11, 7}, {8, 6}, {7, 2}, {3, 1}, {2, 5}, {6, 4}, {5, 3}, {4, 9}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 40"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 75, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_103,}
Same Jones Polynomial (up to mirroring, ): {10_103,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 40"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_103,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_103,} |
Vassiliev invariants
V2 and V3: | (3, 4) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 40. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|