8 16
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 8 16's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X14,6,15,5 X16,11,1,12 X12,7,13,8 X8394 X4,9,5,10 X10,15,11,16 X2,14,3,13 |
Gauss code | 1, -8, 5, -6, 2, -1, 4, -5, 6, -7, 3, -4, 8, -2, 7, -3 |
Dowker-Thistlethwaite code | 6 8 14 12 4 16 2 10 |
Conway Notation | [.2.20] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 8, width is 3, Braid index is 3 |
[{3, 10}, {2, 6}, {8, 11}, {9, 7}, {4, 8}, {6, 9}, {5, 3}, {10, 4}, {1, 5}, {11, 2}, {7, 1}] |
[edit Notes on presentations of 8 16]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 16"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X14,6,15,5 X16,11,1,12 X12,7,13,8 X8394 X4,9,5,10 X10,15,11,16 X2,14,3,13 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -8, 5, -6, 2, -1, 4, -5, 6, -7, 3, -4, 8, -2, 7, -3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 8 14 12 4 16 2 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[.2.20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 8, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 10}, {2, 6}, {8, 11}, {9, 7}, {4, 8}, {6, 9}, {5, 3}, {10, 4}, {1, 5}, {11, 2}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | |
Conway polynomial | |
2nd Alexander ideal (db, data sources) | |
Determinant and Signature | { 35, -2 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2 z^6-a^4 z^4+4 a^2 z^4-z^4-2 a^4 z^2+5 a^2 z^2-2 z^2-a^4+2 a^2} |
Kauffman polynomial (db, data sources) | |
The A2 invariant | |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{100}-2 q^{98}+3 q^{96}-4 q^{94}+2 q^{92}-q^{90}-2 q^{88}+9 q^{86}-12 q^{84}+15 q^{82}-14 q^{80}+7 q^{78}+2 q^{76}-16 q^{74}+28 q^{72}-31 q^{70}+24 q^{68}-10 q^{66}-11 q^{64}+26 q^{62}-30 q^{60}+21 q^{58}-5 q^{56}-15 q^{54}+23 q^{52}-19 q^{50}+2 q^{48}+22 q^{46}-36 q^{44}+36 q^{42}-20 q^{40}-4 q^{38}+30 q^{36}-45 q^{34}+46 q^{32}-33 q^{30}+12 q^{28}+14 q^{26}-32 q^{24}+39 q^{22}-30 q^{20}+14 q^{18}+5 q^{16}-20 q^{14}+24 q^{12}-14 q^{10}-q^8+21 q^6-29 q^4+26 q^2-6-17 q^{-2} +35 q^{-4} -37 q^{-6} +28 q^{-8} -10 q^{-10} -12 q^{-12} +24 q^{-14} -25 q^{-16} +20 q^{-18} -9 q^{-20} -2 q^{-22} +6 q^{-24} -8 q^{-26} +5 q^{-28} -2 q^{-30} + q^{-32} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{13}+2 q^{11}-2 q^9+q^7+2 q- q^{-1} +2 q^{-3} - q^{-5} } |
2 | |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{69}+2 q^{67}-3 q^{63}+q^{61}+6 q^{59}-16 q^{55}+26 q^{51}+6 q^{49}-33 q^{47}-19 q^{45}+35 q^{43}+28 q^{41}-30 q^{39}-32 q^{37}+19 q^{35}+34 q^{33}-5 q^{31}-28 q^{29}-8 q^{27}+20 q^{25}+15 q^{23}-12 q^{21}-24 q^{19}+5 q^{17}+29 q^{15}+2 q^{13}-32 q^{11}-6 q^9+34 q^7+16 q^5-32 q^3-25 q+28 q^{-1} +31 q^{-3} -16 q^{-5} -35 q^{-7} +5 q^{-9} +33 q^{-11} +7 q^{-13} -24 q^{-15} -13 q^{-17} +12 q^{-19} +15 q^{-21} -4 q^{-23} -9 q^{-25} -2 q^{-27} +3 q^{-29} +2 q^{-31} - q^{-33} } |
4 | |
5 | |
6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{228}-2 q^{226}+3 q^{222}-3 q^{220}-2 q^{218}+10 q^{214}+q^{212}-8 q^{210}-19 q^{206}-10 q^{204}+21 q^{202}+57 q^{200}+33 q^{198}-31 q^{196}-73 q^{194}-135 q^{192}-75 q^{190}+106 q^{188}+304 q^{186}+281 q^{184}+25 q^{182}-308 q^{180}-659 q^{178}-562 q^{176}+42 q^{174}+883 q^{172}+1266 q^{170}+813 q^{168}-284 q^{166}-1689 q^{164}-2162 q^{162}-1163 q^{160}+975 q^{158}+2814 q^{156}+3056 q^{154}+1343 q^{152}-1837 q^{150}-4170 q^{148}-3998 q^{146}-992 q^{144}+2915 q^{142}+5291 q^{140}+4527 q^{138}+469 q^{136}-4039 q^{134}-6182 q^{132}-4287 q^{130}+289 q^{128}+4762 q^{126}+6374 q^{124}+3726 q^{122}-1108 q^{120}-5157 q^{118}-5719 q^{116}-2863 q^{114}+1612 q^{112}+4916 q^{110}+4828 q^{108}+1928 q^{106}-1918 q^{104}-4121 q^{102}-3794 q^{100}-1232 q^{98}+1821 q^{96}+3366 q^{94}+2838 q^{92}+684 q^{90}-1514 q^{88}-2714 q^{86}-2150 q^{84}-380 q^{82}+1434 q^{80}+2265 q^{78}+1615 q^{76}+57 q^{74}-1565 q^{72}-2025 q^{70}-1146 q^{68}+573 q^{66}+1878 q^{64}+1816 q^{62}+420 q^{60}-1428 q^{58}-2213 q^{56}-1420 q^{54}+671 q^{52}+2378 q^{50}+2383 q^{48}+523 q^{46}-1971 q^{44}-3147 q^{42}-2159 q^{40}+730 q^{38}+3282 q^{36}+3646 q^{34}+1333 q^{32}-2119 q^{30}-4283 q^{28}-3695 q^{26}-273 q^{24}+3444 q^{22}+5009 q^{20}+3166 q^{18}-818 q^{16}-4378 q^{14}-5287 q^{12}-2546 q^{10}+1786 q^8+5046 q^6+5012 q^4+1936 q^2-2346-5245 q^{-2} -4675 q^{-4} -1385 q^{-6} +2685 q^{-8} +4881 q^{-10} +4252 q^{-12} +1110 q^{-14} -2616 q^{-16} -4443 q^{-18} -3709 q^{-20} -876 q^{-22} +2111 q^{-24} +3844 q^{-26} +3229 q^{-28} +835 q^{-30} -1658 q^{-32} -3060 q^{-34} -2633 q^{-36} -978 q^{-38} +1160 q^{-40} +2332 q^{-42} +2106 q^{-44} +900 q^{-46} -623 q^{-48} -1572 q^{-50} -1682 q^{-52} -795 q^{-54} +263 q^{-56} +992 q^{-58} +1131 q^{-60} +696 q^{-62} +16 q^{-64} -602 q^{-66} -702 q^{-68} -501 q^{-70} -106 q^{-72} +244 q^{-74} +412 q^{-76} +347 q^{-78} +92 q^{-80} -78 q^{-82} -190 q^{-84} -179 q^{-86} -97 q^{-88} +17 q^{-90} +83 q^{-92} +70 q^{-94} +51 q^{-96} +7 q^{-98} -20 q^{-100} -34 q^{-102} -16 q^{-104} + q^{-108} +8 q^{-110} +5 q^{-112} +2 q^{-114} -3 q^{-116} -2 q^{-118} + q^{-120} } |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{28}+q^{26}-2 q^{24}-q^{18}+q^{16}+2 q^{12}+2 q^8+2 q^4+1+ q^{-2} - q^{-4} + q^{-6} - q^{-8} } |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{42}+2 q^{40}-3 q^{38}+5 q^{36}-7 q^{34}+7 q^{32}-8 q^{30}+6 q^{28}-3 q^{26}+4 q^{22}-6 q^{20}+10 q^{18}-13 q^{16}+14 q^{14}-13 q^{12}+11 q^{10}-8 q^8+5 q^6-2 q^2+6-6 q^{-2} +8 q^{-4} -6 q^{-6} +6 q^{-8} -5 q^{-10} +2 q^{-12} - q^{-14} } |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 16"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 35, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2 z^6-a^4 z^4+4 a^2 z^4-z^4-2 a^4 z^2+5 a^2 z^2-2 z^2-a^4+2 a^2} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_156, K11n15, K11n56, K11n58,}
Same Jones Polynomial (up to mirroring, ): {10_156,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 16"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-4 t^2+8 t-9+8 t^{-1} -4 t^{-2} + t^{-3} } , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_156, K11n15, K11n56, K11n58,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_156,} |
Vassiliev invariants
V2 and V3: | (1, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 8 16. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|