8 16

From Knot Atlas
Revision as of 17:48, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

8 15.gif

8_15

8 17.gif

8_17

8 16.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 16's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 16 at Knotilus!

Square depiction.

Knot presentations

Planar diagram presentation X6271 X14,6,15,5 X16,11,1,12 X12,7,13,8 X8394 X4,9,5,10 X10,15,11,16 X2,14,3,13
Gauss code 1, -8, 5, -6, 2, -1, 4, -5, 6, -7, 3, -4, 8, -2, 7, -3
Dowker-Thistlethwaite code 6 8 14 12 4 16 2 10
Conway Notation [.2.20]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 8, width is 3,

Braid index is 3

8 16 ML.gif 8 16 AP.gif
[{3, 10}, {2, 6}, {8, 11}, {9, 7}, {4, 8}, {6, 9}, {5, 3}, {10, 4}, {1, 5}, {11, 2}, {7, 1}]

[edit Notes on presentations of 8 16]

Knot 8_16.
A graph, knot 8_16.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index 4
Nakanishi index 1
Maximal Thurston-Bennequin number [-8][-2]
Hyperbolic Volume 10.579
A-Polynomial See Data:8 16/A-polynomial

[edit Notes for 8 16's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 8 16's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 35, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2 z^6-a^4 z^4+4 a^2 z^4-z^4-2 a^4 z^2+5 a^2 z^2-2 z^2-a^4+2 a^2}
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{100}-2 q^{98}+3 q^{96}-4 q^{94}+2 q^{92}-q^{90}-2 q^{88}+9 q^{86}-12 q^{84}+15 q^{82}-14 q^{80}+7 q^{78}+2 q^{76}-16 q^{74}+28 q^{72}-31 q^{70}+24 q^{68}-10 q^{66}-11 q^{64}+26 q^{62}-30 q^{60}+21 q^{58}-5 q^{56}-15 q^{54}+23 q^{52}-19 q^{50}+2 q^{48}+22 q^{46}-36 q^{44}+36 q^{42}-20 q^{40}-4 q^{38}+30 q^{36}-45 q^{34}+46 q^{32}-33 q^{30}+12 q^{28}+14 q^{26}-32 q^{24}+39 q^{22}-30 q^{20}+14 q^{18}+5 q^{16}-20 q^{14}+24 q^{12}-14 q^{10}-q^8+21 q^6-29 q^4+26 q^2-6-17 q^{-2} +35 q^{-4} -37 q^{-6} +28 q^{-8} -10 q^{-10} -12 q^{-12} +24 q^{-14} -25 q^{-16} +20 q^{-18} -9 q^{-20} -2 q^{-22} +6 q^{-24} -8 q^{-26} +5 q^{-28} -2 q^{-30} + q^{-32} }

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_156, K11n15, K11n56, K11n58,}

Same Jones Polynomial (up to mirroring, ): {10_156,}

Vassiliev invariants

V2 and V3: (1, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{14}{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -8} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{56}{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{114}{5}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{298}{45}}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 8 16. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10123χ
5        1-1
3       2 2
1      21 -1
-1     42  2
-3    33   0
-5   33    0
-7  23     1
-9 13      -2
-11 2       2
-131        -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials