9 14
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 14's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X13,18,14,1 X9,15,10,14 X7,17,8,16 X15,9,16,8 X17,7,18,6 |
| Gauss code | -1, 4, -3, 1, -2, 9, -7, 8, -6, 3, -4, 2, -5, 6, -8, 7, -9, 5 |
| Dowker-Thistlethwaite code | 4 10 12 16 14 2 18 8 6 |
| Conway Notation | [41112] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 5 |
|
![]() [{11, 3}, {2, 9}, {10, 4}, {3, 5}, {9, 11}, {4, 1}, {6, 2}, {5, 7}, {8, 6}, {7, 10}, {1, 8}] |
[edit Notes on presentations of 9 14]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 14"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X13,18,14,1 X9,15,10,14 X7,17,8,16 X15,9,16,8 X17,7,18,6 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -2, 9, -7, 8, -6, 3, -4, 2, -5, 6, -8, 7, -9, 5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 12 16 14 2 18 8 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[41112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(5,\{1,1,2,-1,-3,2,-3,4,-3,4\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 10, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 3}, {2, 9}, {10, 4}, {3, 5}, {9, 11}, {4, 1}, {6, 2}, {5, 7}, {8, 6}, {7, 10}, {1, 8}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^2-9 t+15-9 t^{-1} +2 t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^4-z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 37, 0 } |
| Jones polynomial | |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-2} +z^4-a^2 z^2+z^2 a^{-2} -2 z^2 a^{-4} +z^2+ a^{-2} -2 a^{-4} + a^{-6} +1} |
| Kauffman polynomial (db, data sources) | |
| The A2 invariant | |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 14"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^2-9 t+15-9 t^{-1} +2 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^4-z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 37, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-2} +z^4-a^2 z^2+z^2 a^{-2} -2 z^2 a^{-4} +z^2+ a^{-2} -2 a^{-4} + a^{-6} +1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {K11n53,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 14"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n53,} |
Vassiliev invariants
| V2 and V3: | (-1, -2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 9 14. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{18}-2 q^{17}-q^{16}+6 q^{15}-5 q^{14}-6 q^{13}+15 q^{12}-5 q^{11}-16 q^{10}+23 q^9-2 q^8-27 q^7+28 q^6+4 q^5-34 q^4+27 q^3+9 q^2-33 q+21+9 q^{-1} -23 q^{-2} +13 q^{-3} +5 q^{-4} -11 q^{-5} +6 q^{-6} + q^{-7} -3 q^{-8} + q^{-9} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}-2 q^{35}-q^{34}+2 q^{33}+5 q^{32}-4 q^{31}-9 q^{30}+3 q^{29}+17 q^{28}-q^{27}-23 q^{26}-7 q^{25}+30 q^{24}+16 q^{23}-34 q^{22}-27 q^{21}+32 q^{20}+41 q^{19}-30 q^{18}-49 q^{17}+21 q^{16}+60 q^{15}-14 q^{14}-65 q^{13}+3 q^{12}+70 q^{11}+8 q^{10}-73 q^9-18 q^8+72 q^7+29 q^6-71 q^5-33 q^4+61 q^3+41 q^2-58 q-34+42 q^{-1} +34 q^{-2} -37 q^{-3} -20 q^{-4} +23 q^{-5} +17 q^{-6} -21 q^{-7} -5 q^{-8} +12 q^{-9} +4 q^{-10} -11 q^{-11} + q^{-12} +6 q^{-13} - q^{-14} -3 q^{-15} - q^{-16} +3 q^{-17} - q^{-18} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{60}-2 q^{59}-q^{58}+2 q^{57}+q^{56}+6 q^{55}-8 q^{54}-7 q^{53}+2 q^{52}+3 q^{51}+26 q^{50}-12 q^{49}-23 q^{48}-11 q^{47}-5 q^{46}+63 q^{45}+3 q^{44}-29 q^{43}-38 q^{42}-46 q^{41}+93 q^{40}+35 q^{39}-50 q^{37}-112 q^{36}+86 q^{35}+48 q^{34}+58 q^{33}-18 q^{32}-166 q^{31}+49 q^{30}+14 q^{29}+107 q^{28}+52 q^{27}-177 q^{26}+12 q^{25}-58 q^{24}+124 q^{23}+128 q^{22}-152 q^{21}-8 q^{20}-140 q^{19}+115 q^{18}+193 q^{17}-109 q^{16}-20 q^{15}-215 q^{14}+98 q^{13}+243 q^{12}-59 q^{11}-26 q^{10}-273 q^9+67 q^8+266 q^7-4 q^6-15 q^5-295 q^4+22 q^3+240 q^2+34 q+23-256 q^{-1} -20 q^{-2} +164 q^{-3} +35 q^{-4} +61 q^{-5} -170 q^{-6} -30 q^{-7} +80 q^{-8} +3 q^{-9} +69 q^{-10} -82 q^{-11} -14 q^{-12} +28 q^{-13} -23 q^{-14} +48 q^{-15} -29 q^{-16} +2 q^{-17} +8 q^{-18} -25 q^{-19} +23 q^{-20} -8 q^{-21} +5 q^{-22} +3 q^{-23} -12 q^{-24} +6 q^{-25} -2 q^{-26} +3 q^{-27} + q^{-28} -3 q^{-29} + q^{-30} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{90}-2 q^{89}-q^{88}+2 q^{87}+q^{86}+2 q^{85}+2 q^{84}-6 q^{83}-9 q^{82}+2 q^{81}+7 q^{80}+11 q^{79}+12 q^{78}-9 q^{77}-29 q^{76}-20 q^{75}+6 q^{74}+33 q^{73}+46 q^{72}+15 q^{71}-46 q^{70}-69 q^{69}-41 q^{68}+30 q^{67}+93 q^{66}+84 q^{65}-4 q^{64}-97 q^{63}-122 q^{62}-49 q^{61}+81 q^{60}+149 q^{59}+99 q^{58}-31 q^{57}-145 q^{56}-150 q^{55}-34 q^{54}+112 q^{53}+169 q^{52}+98 q^{51}-36 q^{50}-152 q^{49}-159 q^{48}-51 q^{47}+101 q^{46}+175 q^{45}+145 q^{44}+6 q^{43}-174 q^{42}-234 q^{41}-108 q^{40}+115 q^{39}+290 q^{38}+248 q^{37}-39 q^{36}-334 q^{35}-360 q^{34}-65 q^{33}+337 q^{32}+481 q^{31}+175 q^{30}-335 q^{29}-575 q^{28}-283 q^{27}+314 q^{26}+661 q^{25}+386 q^{24}-294 q^{23}-738 q^{22}-477 q^{21}+273 q^{20}+802 q^{19}+568 q^{18}-251 q^{17}-869 q^{16}-644 q^{15}+225 q^{14}+906 q^{13}+737 q^{12}-183 q^{11}-951 q^{10}-787 q^9+120 q^8+922 q^7+866 q^6-38 q^5-899 q^4-868 q^3-49 q^2+772 q+880+147 q^{-1} -674 q^{-2} -794 q^{-3} -212 q^{-4} +491 q^{-5} +716 q^{-6} +257 q^{-7} -368 q^{-8} -560 q^{-9} -260 q^{-10} +207 q^{-11} +448 q^{-12} +235 q^{-13} -130 q^{-14} -291 q^{-15} -192 q^{-16} +34 q^{-17} +207 q^{-18} +146 q^{-19} -18 q^{-20} -106 q^{-21} -96 q^{-22} -22 q^{-23} +63 q^{-24} +67 q^{-25} +14 q^{-26} -25 q^{-27} -35 q^{-28} -18 q^{-29} +6 q^{-30} +20 q^{-31} +16 q^{-32} -4 q^{-33} -10 q^{-34} -2 q^{-35} -7 q^{-36} +3 q^{-37} +8 q^{-38} -3 q^{-40} +2 q^{-41} -3 q^{-42} - q^{-43} +3 q^{-44} - q^{-45} } |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{126}-2 q^{125}-q^{124}+2 q^{123}+q^{122}+2 q^{121}-2 q^{120}+4 q^{119}-8 q^{118}-9 q^{117}+5 q^{116}+6 q^{115}+12 q^{114}+16 q^{112}-22 q^{111}-35 q^{110}-9 q^{109}+5 q^{108}+36 q^{107}+21 q^{106}+70 q^{105}-21 q^{104}-79 q^{103}-68 q^{102}-48 q^{101}+30 q^{100}+43 q^{99}+193 q^{98}+62 q^{97}-60 q^{96}-133 q^{95}-165 q^{94}-86 q^{93}-49 q^{92}+295 q^{91}+209 q^{90}+108 q^{89}-57 q^{88}-200 q^{87}-245 q^{86}-311 q^{85}+201 q^{84}+214 q^{83}+285 q^{82}+170 q^{81}+27 q^{80}-189 q^{79}-516 q^{78}-37 q^{77}-79 q^{76}+170 q^{75}+243 q^{74}+381 q^{73}+195 q^{72}-341 q^{71}-51 q^{70}-447 q^{69}-301 q^{68}-148 q^{67}+447 q^{66}+615 q^{65}+212 q^{64}+436 q^{63}-453 q^{62}-784 q^{61}-930 q^{60}-15 q^{59}+645 q^{58}+765 q^{57}+1296 q^{56}+92 q^{55}-879 q^{54}-1711 q^{53}-848 q^{52}+151 q^{51}+960 q^{50}+2146 q^{49}+1001 q^{48}-494 q^{47}-2172 q^{46}-1702 q^{45}-668 q^{44}+748 q^{43}+2720 q^{42}+1943 q^{41}+167 q^{40}-2283 q^{39}-2349 q^{38}-1514 q^{37}+326 q^{36}+3007 q^{35}+2713 q^{34}+832 q^{33}-2217 q^{32}-2784 q^{31}-2212 q^{30}-69 q^{29}+3160 q^{28}+3299 q^{27}+1356 q^{26}-2150 q^{25}-3128 q^{24}-2763 q^{23}-352 q^{22}+3297 q^{21}+3795 q^{20}+1786 q^{19}-2085 q^{18}-3443 q^{17}-3262 q^{16}-644 q^{15}+3332 q^{14}+4210 q^{13}+2258 q^{12}-1817 q^{11}-3570 q^{10}-3697 q^9-1116 q^8+3007 q^7+4328 q^6+2736 q^5-1174 q^4-3219 q^3-3810 q^2-1684 q+2192+3857 q^{-1} +2909 q^{-2} -334 q^{-3} -2323 q^{-4} -3321 q^{-5} -1975 q^{-6} +1165 q^{-7} +2814 q^{-8} +2515 q^{-9} +269 q^{-10} -1243 q^{-11} -2327 q^{-12} -1750 q^{-13} +391 q^{-14} +1636 q^{-15} +1707 q^{-16} +415 q^{-17} -438 q^{-18} -1290 q^{-19} -1195 q^{-20} +47 q^{-21} +765 q^{-22} +919 q^{-23} +276 q^{-24} -49 q^{-25} -574 q^{-26} -664 q^{-27} -20 q^{-28} +291 q^{-29} +409 q^{-30} +117 q^{-31} +64 q^{-32} -207 q^{-33} -323 q^{-34} -9 q^{-35} +87 q^{-36} +155 q^{-37} +33 q^{-38} +67 q^{-39} -58 q^{-40} -139 q^{-41} + q^{-42} +14 q^{-43} +50 q^{-44} +2 q^{-45} +41 q^{-46} -11 q^{-47} -49 q^{-48} +4 q^{-49} -3 q^{-50} +14 q^{-51} -5 q^{-52} +17 q^{-53} - q^{-54} -14 q^{-55} +4 q^{-56} -3 q^{-57} +3 q^{-58} -2 q^{-59} +3 q^{-60} + q^{-61} -3 q^{-62} + q^{-63} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




