9 14
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 14's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X13,18,14,1 X9,15,10,14 X7,17,8,16 X15,9,16,8 X17,7,18,6 |
Gauss code | -1, 4, -3, 1, -2, 9, -7, 8, -6, 3, -4, 2, -5, 6, -8, 7, -9, 5 |
Dowker-Thistlethwaite code | 4 10 12 16 14 2 18 8 6 |
Conway Notation | [41112] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 5 |
[{11, 3}, {2, 9}, {10, 4}, {3, 5}, {9, 11}, {4, 1}, {6, 2}, {5, 7}, {8, 6}, {7, 10}, {1, 8}] |
[edit Notes on presentations of 9 14]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 14"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X13,18,14,1 X9,15,10,14 X7,17,8,16 X15,9,16,8 X17,7,18,6 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -2, 9, -7, 8, -6, 3, -4, 2, -5, 6, -8, 7, -9, 5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 12 16 14 2 18 8 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[41112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 10, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 3}, {2, 9}, {10, 4}, {3, 5}, {9, 11}, {4, 1}, {6, 2}, {5, 7}, {8, 6}, {7, 10}, {1, 8}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | |
Conway polynomial | |
2nd Alexander ideal (db, data sources) | |
Determinant and Signature | { 37, 0 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-2} +z^4-a^2 z^2+z^2 a^{-2} -2 z^2 a^{-4} +z^2+ a^{-2} -2 a^{-4} + a^{-6} +1} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-2} +z^8 a^{-4} +3 z^7 a^{-1} +5 z^7 a^{-3} +2 z^7 a^{-5} +3 z^6 a^{-2} +z^6 a^{-6} +4 z^6+4 a z^5-4 z^5 a^{-1} -16 z^5 a^{-3} -8 z^5 a^{-5} +3 a^2 z^4-12 z^4 a^{-2} -9 z^4 a^{-4} -4 z^4 a^{-6} -4 z^4+a^3 z^3-3 a z^3+2 z^3 a^{-1} +15 z^3 a^{-3} +9 z^3 a^{-5} -2 a^2 z^2+8 z^2 a^{-2} +10 z^2 a^{-4} +4 z^2 a^{-6} -2 z a^{-1} -5 z a^{-3} -3 z a^{-5} - a^{-2} -2 a^{-4} - a^{-6} +1} |
The A2 invariant | |
The G2 invariant |
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{10}+q^8+q^6-q^4+2 q^2+ q^{-2} + q^{-4} + q^{-8} -2 q^{-10} - q^{-12} - q^{-16} + q^{-18} + q^{-20} } |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-4 q^{26}+8 q^{24}-12 q^{22}+18 q^{20}-28 q^{18}+34 q^{16}-38 q^{14}+43 q^{12}-48 q^{10}+50 q^8-44 q^6+46 q^4-32 q^2+22-24 q^{-4} +50 q^{-6} -80 q^{-8} +102 q^{-10} -118 q^{-12} +126 q^{-14} -126 q^{-16} +108 q^{-18} -91 q^{-20} +62 q^{-22} -30 q^{-24} +34 q^{-28} -50 q^{-30} +70 q^{-32} -76 q^{-34} +71 q^{-36} -62 q^{-38} +48 q^{-40} -36 q^{-42} +21 q^{-44} -12 q^{-46} +6 q^{-48} -2 q^{-50} + q^{-52} } |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}-q^{24}-2 q^{22}+q^{20}+2 q^{18}-q^{16}-4 q^{14}+3 q^{12}+5 q^{10}-3 q^8-2 q^6+6 q^4+4 q^2-2-2 q^{-2} +2 q^{-4} - q^{-8} + q^{-10} -3 q^{-14} +2 q^{-16} + q^{-18} -5 q^{-20} -3 q^{-22} +2 q^{-24} +3 q^{-26} -2 q^{-28} +5 q^{-32} +4 q^{-34} -2 q^{-36} -2 q^{-38} + q^{-40} + q^{-42} -2 q^{-44} -3 q^{-46} + q^{-50} + q^{-52} } |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{22}-2 q^{20}-q^{18}+4 q^{16}-3 q^{14}-2 q^{12}+6 q^{10}-2 q^8-4 q^6+7 q^4+q^2-1+5 q^{-2} +2 q^{-4} -2 q^{-6} -3 q^{-8} -6 q^{-14} +2 q^{-16} +5 q^{-18} -4 q^{-20} +2 q^{-22} +4 q^{-24} -4 q^{-26} +2 q^{-30} -3 q^{-32} + q^{-34} + q^{-36} - q^{-38} + q^{-40} } |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}-2 q^{32}-2 q^{30}+q^{28}+4 q^{26}+q^{24}-4 q^{22}-4 q^{20}+2 q^{18}+6 q^{16}+2 q^{14}-5 q^{12}-4 q^{10}+3 q^8+7 q^6-4 q^2+6 q^{-2} +3 q^{-4} -3 q^{-6} -4 q^{-8} +2 q^{-10} +3 q^{-12} -2 q^{-14} -5 q^{-16} +3 q^{-20} - q^{-22} -5 q^{-24} - q^{-26} +6 q^{-28} +4 q^{-30} -3 q^{-32} -6 q^{-34} +2 q^{-36} +7 q^{-38} +3 q^{-40} -5 q^{-42} -5 q^{-44} +2 q^{-46} +5 q^{-48} -4 q^{-52} -2 q^{-54} +2 q^{-56} +2 q^{-58} - q^{-60} - q^{-62} + q^{-66} } |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 14"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 37, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-2} +z^4-a^2 z^2+z^2 a^{-2} -2 z^2 a^{-4} +z^2+ a^{-2} -2 a^{-4} + a^{-6} +1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-2} +z^8 a^{-4} +3 z^7 a^{-1} +5 z^7 a^{-3} +2 z^7 a^{-5} +3 z^6 a^{-2} +z^6 a^{-6} +4 z^6+4 a z^5-4 z^5 a^{-1} -16 z^5 a^{-3} -8 z^5 a^{-5} +3 a^2 z^4-12 z^4 a^{-2} -9 z^4 a^{-4} -4 z^4 a^{-6} -4 z^4+a^3 z^3-3 a z^3+2 z^3 a^{-1} +15 z^3 a^{-3} +9 z^3 a^{-5} -2 a^2 z^2+8 z^2 a^{-2} +10 z^2 a^{-4} +4 z^2 a^{-6} -2 z a^{-1} -5 z a^{-3} -3 z a^{-5} - a^{-2} -2 a^{-4} - a^{-6} +1} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {K11n53,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 14"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^2-9 t+15-9 t^{-1} +2 t^{-2} } , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n53,} |
Vassiliev invariants
V2 and V3: | (-1, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 14. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|