In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[7, Alternating, 2]] |
Out[2]= | 7 |
In[3]:= | PD[Link[7, Alternating, 2]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[14, 11, 5, 12], X[12, 7, 13, 8],
X[8, 13, 9, 14], X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[4]:= | GaussCode[Link[7, Alternating, 2]] |
Out[4]= | GaussCode[{1, -6, 2, -7}, {6, -1, 4, -5, 7, -2, 3, -4, 5, -3}] |
In[5]:= | BR[Link[7, Alternating, 2]] |
Out[5]= | BR[Link[7, Alternating, 2]] |
In[6]:= | alex = Alexander[Link[7, Alternating, 2]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[7, Alternating, 2]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[7, Alternating, 2]], KnotSignature[Link[7, Alternating, 2]]} |
Out[9]= | {Infinity, -3} |
In[10]:= | J=Jones[Link[7, Alternating, 2]][q] |
Out[10]= | -(17/2) 2 3 4 3 4 2 -(3/2)
q - ----- + ----- - ----- + ---- - ---- + ---- - q
15/2 13/2 11/2 9/2 7/2 5/2
q q q q q q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[7, Alternating, 2]][q] |
Out[12]= | -28 2 -20 3 2 3 -12 -10 -8 -6 -4
-q - --- + q + --- + --- + --- + q + q + q - q + q
26 18 16 14
q q q q |
In[13]:= | Kauffman[Link[7, Alternating, 2]][a, z] |
Out[13]= | 5 7 9
6 8 10 2 a 3 a a 3 5 7
-3 a - 3 a - a + ---- + ---- + -- + a z - 5 a z - 8 a z -
z z z
9 4 2 6 2 8 2 10 2 3 3 5 3
2 a z + a z + 6 a z + 7 a z + 2 a z - a z + 5 a z +
7 3 9 3 4 4 6 4 8 4 10 4 5 5
10 a z + 4 a z - 2 a z - 3 a z - 2 a z - a z - 3 a z -
7 5 9 5 6 6 8 6
5 a z - 2 a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[7, Alternating, 2]], Vassiliev[3][Link[7, Alternating, 2]]} |
Out[14]= | 43
{0, --}
24 |
In[15]:= | Kh[Link[7, Alternating, 2]][q, t] |
Out[15]= | -4 -2 1 1 1 2 1 2
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
18 7 16 6 14 6 14 5 12 5 12 4
q t q t q t q t q t q t
3 2 1 2 2 2
------ + ------ + ----- + ----- + ----- + ----
10 4 10 3 8 3 8 2 6 2 4
q t q t q t q t q t q t |