In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[7, Alternating, 3]] |
Out[2]= | 7 |
In[3]:= | PD[Link[7, Alternating, 3]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 4, 11, 3], X[12, 8, 13, 7], X[14, 10, 5, 9],
X[8, 14, 9, 13], X[2, 5, 3, 6], X[4, 12, 1, 11]] |
In[4]:= | GaussCode[Link[7, Alternating, 3]] |
Out[4]= | GaussCode[{1, -6, 2, -7}, {6, -1, 3, -5, 4, -2, 7, -3, 5, -4}] |
In[5]:= | BR[Link[7, Alternating, 3]] |
Out[5]= | BR[Link[7, Alternating, 3]] |
In[6]:= | alex = Alexander[Link[7, Alternating, 3]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[7, Alternating, 3]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[7, Alternating, 3]], KnotSignature[Link[7, Alternating, 3]]} |
Out[9]= | {Infinity, 3} |
In[10]:= | J=Jones[Link[7, Alternating, 3]][q] |
Out[10]= | 1 3/2 5/2 7/2 9/2 11/2
-(-------) + Sqrt[q] - 3 q + 2 q - 3 q + 3 q - 2 q +
Sqrt[q]
13/2
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[7, Alternating, 3]][q] |
Out[12]= | -2 2 4 6 8 14 16 20
1 + q + 2 q + 3 q + 2 q + 3 q - q - q - q |
In[13]:= | Kauffman[Link[7, Alternating, 3]][a, z] |
Out[13]= | 2 2
-6 3 3 1 3 2 4 z 9 z 5 z z 3 z
-a - -- - -- + ---- + ---- + --- - --- - --- - --- - -- + ---- +
4 2 5 3 a z 5 3 a 8 6
a a a z a z a a a a
2 2 3 3 3 3 4 4 4 5
6 z 2 z 2 z 6 z 12 z 4 z 3 z z 2 z 3 z
---- + ---- - ---- + ---- + ----- + ---- - ---- - -- + ---- - ---- -
4 2 7 5 3 a 6 4 2 5
a a a a a a a a a
5 5 6 6
4 z z z z
---- - -- - -- - --
3 a 4 2
a a a |
In[14]:= | {Vassiliev[2][Link[7, Alternating, 3]], Vassiliev[3][Link[7, Alternating, 3]]} |
Out[14]= | {0, -3} |
In[15]:= | Kh[Link[7, Alternating, 3]][q, t] |
Out[15]= | 2
2 4 1 q 4 6 6 2 8 2 8 3
3 q + 2 q + ----- + -- + q t + q t + 2 q t + q t + q t +
2 2 t
q t
10 3 10 4 12 4 14 5
2 q t + q t + q t + q t |