In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 49]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 49]] |
Out[3]= | PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[16, 10, 17, 9], X[14, 8, 15, 7],
X[18, 14, 11, 13], X[10, 16, 5, 15], X[8, 18, 9, 17], X[2, 5, 3, 6],
X[4, 11, 1, 12]] |
In[4]:= | GaussCode[Link[9, Alternating, 49]] |
Out[4]= | GaussCode[{1, -8, 2, -9}, {8, -1, 4, -7, 3, -6},
{9, -2, 5, -4, 6, -3, 7, -5}] |
In[5]:= | BR[Link[9, Alternating, 49]] |
Out[5]= | BR[Link[9, Alternating, 49]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 49]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 49]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 49]], KnotSignature[Link[9, Alternating, 49]]} |
Out[9]= | {Infinity, 0} |
In[10]:= | J=Jones[Link[9, Alternating, 49]][q] |
Out[10]= | -4 2 5 6 2 3 4 5
8 + q - -- + -- - - - 7 q + 7 q - 4 q + 3 q - q
3 2 q
q q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 49]][q] |
Out[12]= | -14 -12 -10 2 2 -4 5 2 4 6
3 + q + q - q + -- + -- + q + -- + 5 q + 3 q + 2 q +
8 6 2
q q q
8 10 12 14 16
3 q - q + q + q - q |
In[13]:= | Kauffman[Link[9, Alternating, 49]][a, z] |
Out[13]= | 2
5 2 4 2 1 a 2 2 a 6 z
-8 - -- - 3 a + a + -- + ----- + -- - --- - --- + --- + 6 a z +
2 2 2 2 2 a z z a
a z a z z
2 2 3 3 3
2 5 z 11 z 2 2 4 2 2 z 2 z z
12 z + ---- + ----- + 4 a z - 2 a z - ---- + ---- - -- -
4 2 5 3 a
a a a a
4 4 5
3 3 3 4 8 z 13 z 2 4 4 4 z
7 a z - 2 a z - 10 z - ---- - ----- - 4 a z + a z + -- -
4 2 5
a a a
5 5 6 6
6 z 7 z 5 3 5 6 3 z 4 z 2 6
---- - ---- + 2 a z + 2 a z + 4 z + ---- + ---- + 3 a z +
3 a 4 2
a a a
7 7 8
3 z 5 z 7 8 z
---- + ---- + 2 a z + z + --
3 a 2
a a |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 49]], Vassiliev[3][Link[9, Alternating, 49]]} |
Out[14]= | {0, 1} |
In[15]:= | Kh[Link[9, Alternating, 49]][q, t] |
Out[15]= | 5 1 1 2 3 2 3 3
- + 4 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 3 q t +
q 9 4 7 4 7 3 5 2 3 2 3 q t
q t q t q t q t q t q t
3 3 2 5 2 5 3 7 3 7 4 9 4
4 q t + 4 q t + 5 q t + 2 q t + 2 q t + q t + 2 q t +
11 5
q t |