In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 51]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 51]] |
Out[3]= | PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[8, 12, 9, 11], X[18, 8, 11, 7],
X[16, 13, 17, 14], X[14, 6, 15, 5], X[10, 16, 5, 15], X[2, 9, 3, 10],
X[4, 18, 1, 17]] |
In[4]:= | GaussCode[Link[9, Alternating, 51]] |
Out[4]= | GaussCode[{1, -8, 2, -9}, {6, -1, 4, -3, 8, -7},
{3, -2, 5, -6, 7, -5, 9, -4}] |
In[5]:= | BR[Link[9, Alternating, 51]] |
Out[5]= | BR[Link[9, Alternating, 51]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 51]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 51]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 51]], KnotSignature[Link[9, Alternating, 51]]} |
Out[9]= | {Infinity, 2} |
In[10]:= | J=Jones[Link[9, Alternating, 51]][q] |
Out[10]= | -2 4 2 3 4 5 6 7
-6 - q + - + 9 q - 10 q + 11 q - 8 q + 7 q - 3 q + q
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 51]][q] |
Out[12]= | -6 2 2 4 6 8 10 12 14
1 - q + -- + 3 q - 2 q + 3 q + q + 5 q + 6 q + 3 q +
4
q
16 22
5 q + q |
In[13]:= | Kauffman[Link[9, Alternating, 51]][a, z] |
Out[13]= | 5 8 3 1 2 1 2 2 6 z 6 z
1 - -- - -- - -- + ----- + ----- + ----- - ---- - ---- + --- + --- +
6 4 2 6 2 4 2 2 2 5 3 5 3
a a a a z a z a z a z a z a a
2 2 2 2 3 3 3 3
2 z 10 z 17 z 9 z 2 z 4 z 2 z 3 z 3
3 z - -- + ----- + ----- + ---- - ---- - ---- + ---- + ---- - a z -
8 6 4 2 7 5 3 a
a a a a a a a
4 4 4 4 5 5 5 5
4 z 10 z 21 z 18 z 3 z 3 z 16 z 9 z
8 z + -- - ----- - ----- - ----- + ---- - ---- - ----- - ---- +
8 6 4 2 7 5 3 a
a a a a a a a
6 6 6 7 7 7 8 8
5 6 6 z 8 z 6 z 5 z 10 z 5 z 2 z 2 z
a z + 4 z + ---- + ---- + ---- + ---- + ----- + ---- + ---- + ----
6 4 2 5 3 a 4 2
a a a a a a a |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 51]], Vassiliev[3][Link[9, Alternating, 51]]} |
Out[14]= | 23
{0, -(--)}
3 |
In[15]:= | Kh[Link[9, Alternating, 51]][q, t] |
Out[15]= | 3 1 3 1 3 3 q 3 5
6 q + 5 q + ----- + ----- + ---- + --- + --- + 6 q t + 4 q t +
5 3 3 2 2 q t t
q t q t q t
5 2 7 2 7 3 9 3 9 4 11 4
5 q t + 7 q t + 4 q t + 4 q t + 3 q t + 4 q t +
13 5 13 6 15 6
3 q t + q t + q t |