In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, Alternating, 4]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, Alternating, 4]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 4, 11, 3], X[12, 10, 13, 9], X[16, 13, 5, 14],
X[14, 7, 15, 8], X[8, 15, 9, 16], X[2, 5, 3, 6], X[4, 12, 1, 11]] |
In[4]:= | GaussCode[Link[8, Alternating, 4]] |
Out[4]= | GaussCode[{1, -7, 2, -8}, {7, -1, 5, -6, 3, -2, 8, -3, 4, -5, 6, -4}] |
In[5]:= | BR[Link[8, Alternating, 4]] |
Out[5]= | BR[Link[8, Alternating, 4]] |
In[6]:= | alex = Alexander[Link[8, Alternating, 4]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, Alternating, 4]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, Alternating, 4]], KnotSignature[Link[8, Alternating, 4]]} |
Out[9]= | {Infinity, -1} |
In[10]:= | J=Jones[Link[8, Alternating, 4]][q] |
Out[10]= | -(11/2) 2 4 6 5 6 3/2
q - ---- + ---- - ---- + ---- - ------- + 4 Sqrt[q] - 3 q +
9/2 7/2 5/2 3/2 Sqrt[q]
q q q q
5/2
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, Alternating, 4]][q] |
Out[12]= | -18 -16 2 -10 2 2 4 -2 6 8
3 - q - q - --- + q + -- + -- + -- + q + q - q
12 8 6 4
q q q q |
In[13]:= | Kauffman[Link[8, Alternating, 4]][a, z] |
Out[13]= | 3 5
2 4 6 2 a 3 a a 2 z 3 5
-3 a - 3 a - a + --- + ---- + -- - --- - 7 a z - 7 a z - 2 a z +
z z z a
2 3
2 z 2 2 4 2 6 2 5 z 3 3 3
z + -- + 2 a z + 4 a z + 2 a z + ---- + 11 a z + 9 a z +
2 a
a
4 5
5 3 4 z 2 4 6 4 3 z 5 3 5
3 a z + 3 z - -- + 5 a z - a z - ---- - 5 a z - 4 a z -
2 a
a
5 5 6 2 6 4 6 7 3 7
2 a z - 3 z - 5 a z - 2 a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[8, Alternating, 4]], Vassiliev[3][Link[8, Alternating, 4]]} |
Out[14]= | {0, 2} |
In[15]:= | Kh[Link[8, Alternating, 4]][q, t] |
Out[15]= | 4 1 1 1 3 1 3 3
4 + -- + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
2 12 5 10 4 8 4 8 3 6 3 6 2 4 2
q q t q t q t q t q t q t q t
2 3 2 2 2 4 2 6 3
---- + ---- + 2 t + 2 q t + q t + 2 q t + q t
4 2
q t q t |