In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 43]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 43]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[14, 7, 15, 8], X[8, 13, 5, 14],
X[16, 11, 17, 12], X[18, 15, 9, 16], X[12, 17, 13, 18],
X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[4]:= | GaussCode[Link[9, Alternating, 43]] |
Out[4]= | GaussCode[{1, -8, 2, -9}, {8, -1, 3, -4},
{9, -2, 5, -7, 4, -3, 6, -5, 7, -6}] |
In[5]:= | BR[Link[9, Alternating, 43]] |
Out[5]= | BR[Link[9, Alternating, 43]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 43]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 43]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 43]], KnotSignature[Link[9, Alternating, 43]]} |
Out[9]= | {Infinity, -4} |
In[10]:= | J=Jones[Link[9, Alternating, 43]][q] |
Out[10]= | -11 2 5 8 8 10 7 7 3 -2
-q + --- - -- + -- - -- + -- - -- + -- - -- + q
10 9 8 7 6 5 4 3
q q q q q q q q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 43]][q] |
Out[12]= | -36 3 2 -30 2 4 5 6 8 4 6
-q - --- - --- - q - --- + --- + --- + --- + --- + --- + --- +
34 32 28 26 24 22 20 18 16
q q q q q q q q q
-14 -12 2 2 -6
q + q + --- - -- + q
10 8
q q |
In[13]:= | Kauffman[Link[9, Alternating, 43]][a, z] |
Out[13]= | 6 8 10 12 7
6 8 10 12 2 a 5 a 4 a a 5 a
-7 a - 14 a - 10 a - 2 a + ---- + ---- + ----- + --- - ---- -
2 2 2 2 z
z z z z
9 11 13
9 a 5 a a 7 9 11 13 4 2
---- - ----- - --- + 11 a z + 21 a z + 13 a z + 3 a z - a z +
z z z
6 2 8 2 10 2 12 2 5 3 7 3
11 a z + 23 a z + 14 a z + 3 a z - 2 a z - 10 a z -
9 3 11 3 13 3 4 4 6 4 8 4
16 a z - 11 a z - 3 a z + a z - 11 a z - 24 a z -
10 4 12 4 5 5 9 5 11 5 13 5
16 a z - 4 a z + 3 a z - 3 a z + a z + a z +
6 6 8 6 10 6 12 6 7 7 9 7
6 a z + 10 a z + 6 a z + 2 a z + 4 a z + 6 a z +
11 7 8 8 10 8
2 a z + a z + a z |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 43]], Vassiliev[3][Link[9, Alternating, 43]]} |
Out[14]= | 1
{0, -}
2 |
In[15]:= | Kh[Link[9, Alternating, 43]][q, t] |
Out[15]= | -5 -3 1 1 1 4 1 4
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
23 9 21 8 19 8 19 7 17 7 17 6
q t q t q t q t q t q t
4 4 4 6 7 4 3 3
------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- +
15 6 15 5 13 5 13 4 11 4 11 3 9 3 9 2
q t q t q t q t q t q t q t q t
4 3
----- + ----
7 2 5
q t q t |