In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, NonAlternating, 2]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, NonAlternating, 2]] |
Out[3]= | PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[15, 1, 16, 4], X[9, 12, 10, 13],
X[3, 8, 4, 9], X[5, 11, 6, 10], X[11, 5, 12, 16], X[2, 14, 3, 13]] |
In[4]:= | GaussCode[Link[8, NonAlternating, 2]] |
Out[4]= | GaussCode[{1, -8, -5, 3}, {-6, -1, 2, 5, -4, 6, -7, 4, 8, -2, -3, 7}] |
In[5]:= | BR[Link[8, NonAlternating, 2]] |
Out[5]= | BR[Link[8, NonAlternating, 2]] |
In[6]:= | alex = Alexander[Link[8, NonAlternating, 2]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, NonAlternating, 2]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, NonAlternating, 2]], KnotSignature[Link[8, NonAlternating, 2]]} |
Out[9]= | {Infinity, 1} |
In[10]:= | J=Jones[Link[8, NonAlternating, 2]][q] |
Out[10]= | -(7/2) -(5/2) -(3/2) 1 3/2 5/2
-q + q - q + ------- - 2 Sqrt[q] + q - q
Sqrt[q] |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, NonAlternating, 2]][q] |
Out[12]= | -12 -10 -8 -6 4 6 8 10
q + q + q + q + q + q + 2 q + q |
In[13]:= | Kauffman[Link[8, NonAlternating, 2]][a, z] |
Out[13]= | 3 2
1 2 2 a a z 6 z 3 2 z
1 + ---- + --- + --- + -- - -- - --- - 8 a z - 3 a z - 4 z - -- -
3 a z z z 3 a 2
a z a a
3 5
2 2 4 z 3 3 3 4 2 4 z 5
3 a z + ---- + 8 a z + 4 a z + 4 z + 4 a z - -- - 2 a z -
a a
3 5 6 2 6
a z - z - a z |
In[14]:= | {Vassiliev[2][Link[8, NonAlternating, 2]], Vassiliev[3][Link[8, NonAlternating, 2]]} |
Out[14]= | 1
{0, -(-)}
2 |
In[15]:= | Kh[Link[8, NonAlternating, 2]][q, t] |
Out[15]= | -2 2 1 1 1 1 1 2 6 2
2 + q + 2 q + ----- + ----- + ----- + - + ---- + q t + q t
8 4 4 3 4 2 t 2
q t q t q t q t |