K11n119

From Knot Atlas
Revision as of 16:16, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11n118.gif

K11n118

K11n120.gif

K11n120

K11n119.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n119 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X14,5,15,6 X7,20,8,21 X2,10,3,9 X16,11,17,12 X18,14,19,13 X8,15,9,16 X22,17,1,18 X19,6,20,7 X12,22,13,21
Gauss code 1, -5, 2, -1, 3, 10, -4, -8, 5, -2, 6, -11, 7, -3, 8, -6, 9, -7, -10, 4, 11, -9
Dowker-Thistlethwaite code 4 10 14 -20 2 16 18 8 22 -6 12
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11n119 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n119/ThurstonBennequinNumber
Hyperbolic Volume 14.3682
A-Polynomial See Data:K11n119/A-polynomial

[edit Notes for K11n119's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11n119's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 69, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant Data:K11n119/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_34, K11n32,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11n119. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-10123χ
7         2-2
5        4 4
3       42 -2
1      74  3
-1     65   -1
-3    56    -1
-5   46     2
-7  25      -3
-9 14       3
-11 2        -2
-131         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n118.gif

K11n118

K11n120.gif

K11n120