DT (Dowker-Thistlethwaite) Codes

From Knot Atlas
Revision as of 06:26, 26 May 2009 by GetpaSliva (talk | contribs)
Jump to navigationJump to search

agencias auto de nuevos exchange rate australian us [http://s1.shard.jp/frhorton/sprmxlc9l.html african food and music ] [http://s1.shard.jp/olharder/comparatif-automobile.html reagor auto mall ] [http://s1.shard.jp/losaul/australian-photography.html australia foxrates.com.au hilton hotel ] [http://s1.shard.jp/losaul/online-clothing.html patchwork fabrics australia ] [http://s1.shard.jp/frhorton/rykfyeh82.html africa waterfall ] [http://s1.shard.jp/frhorton/hwct2dcpc.html africa development foundation ] index [http://s1.shard.jp/losaul/midas-mufflers.html pet products online australia ] links url [http://s1.shard.jp/galeach/new163.html east asia program cornell ] [http://s1.shard.jp/bireba/symantec-antivirus.html symantec antivirus corporate edition 10.1 0.394 ] [http://s1.shard.jp/bireba/download-free.html norton antivirus 2005 serials and cracks ] [http://s1.shard.jp/olharder/automoveis-bmw.html auto painting kits ] [http://s1.shard.jp/bireba/download-symantec.html platinum internet security 2005 antivirus titanium ] [http://s1.shard.jp/bireba/mac-antivirus.html symentec antivirus updates ] [http://s1.shard.jp/olharder/used-automobile.html automobile operating cost per mile ] [http://s1.shard.jp/frhorton/3l1e7cosa.html safari trip to africa ] [http://s1.shard.jp/losaul/liberal-party.html australia land tours ] [http://s1.shard.jp/olharder/automated-vehicle.html autocad 2006 electrical + plotter manager + close ] [http://s1.shard.jp/galeach/new62.html antique art asian ] [http://s1.shard.jp/galeach/new132.html asian girl punished ] [http://s1.shard.jp/losaul/06-australia.html australian outback holidays ] [http://s1.shard.jp/bireba/symantec-antivirus.html cd key norton antivirus 2005 ] auto part for 1996 audi a4 [http://s1.shard.jp/olharder/automobile-dealer.html auction auto garden state ] [http://s1.shard.jp/frhorton/1oj3zcvfn.html africa corporate gift sou ] [http://s1.shard.jp/olharder/automotive-training.html columbia auto insurance ] [http://s1.shard.jp/bireba/panda-titanium.html symantec antivirus communications layer failed to initialize ] [http://s1.shard.jp/galeach/new84.html angela asian4you ] [http://s1.shard.jp/frhorton/kqcuriisf.html somalia africa ] url [http://s1.shard.jp/losaul/australian-census.html australian single girls ] australian club shepard [http://s1.shard.jp/losaul/auction-houses.html australian family law journal ] [http://s1.shard.jp/losaul/dog-bike-trailer.html australia job sites ] [http://s1.shard.jp/frhorton/aarrl6erq.html beautiful african american hair style ] [http://s1.shard.jp/frhorton/3otvgvzdn.html early colonization of africa ] [http://s1.shard.jp/frhorton/os7hwbkxo.html african hair jewelry ] [http://s1.shard.jp/bireba/top-antivirus.html symantac antivirus update ] [http://s1.shard.jp/frhorton/bzsc3x6qn.html africa slave trade lesson plan ] [http://s1.shard.jp/bireba/alarm-antivirus.html trend micro housecalls antivirus ] [http://s1.shard.jp/bireba/symantec-antivirus.html cheap antivirus software ] index [http://s1.shard.jp/bireba/dod-cert-antivirus.html antiviruskit 2004 ] [http://s1.shard.jp/losaul/ladies-fashion.html holden australia month ] [http://s1.shard.jp/olharder/arabian-automobiles.html volvo auto body parts ] http://www.textelroelb.com http://www.texttrolool.com


Knots

The "DT Code" ("DT" after Clifford Hugh Dowker and Morwen Thistlethwaite) of a knot is obtained as follows:

  • Start "walking" along and count every crossing you pass through. If has crossings and given that every crossing is visited twice, the count ends at . Label each crossing with the values of the counter when it is visited, though when labeling by an even number, take it with a minus sign if you are walking "over" the crossing.
  • Every crossing is now labeled with two integers whose absolute values run from to . It is easy to see that each crossing is labeled with one odd integer and one even integer. The DT code of is the list of even integers paired with the odd integers 1, 3, 5, ..., taken in this order. Thus for example the pairing for the knot in the figure below is , and hence its DT code is (and as DT codes are insensitive to overall mirrors, this is equivalent to ).
The DT notation

KnotTheory` has some rudimentary support for DT codes:

(For In[1] see Setup)

In[2]:= ?DTCode
DTCode[i1, i2, ...] represents a knot via its DT (Dowker-Thistlethwaite) code, while DTCode[{i11,...}, {i21...}, ...] likewise represents a link. DTCode also acts as a "type caster", so for example, DTCode[K] where K is is a named knot or link returns the DT code of K.

Thus for example, the DT codes for the last 9 crossing alternating knot 9_41 and the first 9 crossing non alternating knot 9_42 are:

In[3]:= dts = DTCode /@ {Knot[9, 41], Knot[9, 42]}
Out[3]= {DTCode[6, 10, 14, 12, 16, 2, 18, 4, 8], DTCode[4, 8, 10, -14, 2, -16, -18, -6, -12]}

(The DT code of an alternating knot is always a sequence of positive numbers but the DT code of a non alternating knot contains both signs.)

9 41.gif
9_41
9 42.gif
9_42

DT codes and Gauss codes carry the same information and are easily convertible:

In[4]:= gcs = GaussCode /@ dts
Out[4]= {GaussCode[1, -6, 2, -8, 3, -1, 4, -9, 5, -2, 6, -4, 7, -3, 8, -5, 9, -7], GaussCode[1, -5, 2, -1, 3, 8, -4, -2, 5, -3, -6, 9, -7, 4, -8, 6, -9, 7]}
In[5]:= DTCode /@ gcs
Out[5]= {DTCode[6, 10, 14, 12, 16, 2, 18, 4, 8], DTCode[4, 8, 10, -14, 2, -16, -18, -6, -12]}

Conversion between DT codes and/or Gauss codes and PD codes is more complicated; the harder side, going from DT/Gauss to PD, was written by Siddarth Sankaran at the University of Toronto:

In[6]:= PD[DTCode[4, 6, 2]]
Out[6]= PD[X[4, 2, 5, 1], X[6, 4, 1, 3], X[2, 6, 3, 5]]

Links

A DT notation example, for the link L7n2

DT Codes for links are defined in a similar way (see [DollHoste]). Follow the same numbering process as for knots, except when you finish traversing one component, jump straight to the next. It is not difficult to see that there is always a choice of starting points along the components for which the resulting pairing is a pairing between odd and even numbers. (On the figure above one possible choice is indicated). Again, it is enough to only list the even numbers corresponding to ; call the resulting list . (Above, ). Notice that the odd indices are naturally subdivided into sublists according to the component of the link on which they lie, and this induces a subdivision of into sublists. Thus with the choices made in the figure above, the DT code for the link L7n2 is .

KnotTheory` knows about DT codes for links:

In[7]:= DTCode[Link[7, NonAlternating, 2]]
Out[7]= DTCode[{6, -8}, {-10, 12, -14, 2, -4}]
In[8]:= MultivariableAlexander[DTCode[{6, -8}, {-10, 12, -14, 2, -4}]][t]
Out[8]= -1 + t[1] + t[2] - t[1] t[2]

[DollHoste] ^  H. Doll and J. Hoste, A tabulation of oriented links, Mathematics of Computation 57-196 (1991) 747-761.