8 6

From Knot Atlas
Revision as of 17:06, 29 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

8 5.gif

8_5

8 7.gif

8_7

8 6.gif Visit 8 6's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 6's page at Knotilus!

Visit 8 6's page at the original Knot Atlas!

8 6 Quick Notes


8 6 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X5,14,6,15 X7,16,8,1 X15,6,16,7 X13,8,14,9
Gauss code -1, 4, -3, 1, -5, 7, -6, 8, -2, 3, -4, 2, -8, 5, -7, 6
Dowker-Thistlethwaite code 4 10 14 16 12 2 8 6
Conway Notation [332]

Minimum Braid Representative:

BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 9, width is 4.

Braid index is 4.

A Morse Link Presentation:

8 6 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-9][-1]
Hyperbolic Volume 7.47524
A-Polynomial See Data:8 6/A-polynomial

[edit Notes for 8 6's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 8 6's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 23, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n20, K11n151, K11n152, ...}

Same Jones Polynomial (up to mirroring, ): {...}

Vassiliev invariants

V2 and V3: (-2, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 8 6. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-1012χ
3        11
1         0
-1      31 2
-3     21  -1
-5    22   0
-7   22    0
-9  12     -1
-11 12      1
-13 1       -1
-151        1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials