In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[8, 21]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[12, 6, 13, 5], X[13, 16, 14, 1],
X[9, 14, 10, 15], X[15, 10, 16, 11], X[6, 12, 7, 11], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[8, 21]] |
Out[3]= | GaussCode[-1, 8, -2, 1, 3, -7, -8, 2, -5, 6, 7, -3, -4, 5, -6, 4] |
In[4]:= | DTCode[Knot[8, 21]] |
Out[4]= | DTCode[4, 8, -12, 2, 14, -6, 16, 10] |
In[5]:= | br = BR[Knot[8, 21]] |
Out[5]= | BR[3, {-1, -1, -1, -2, 1, 1, -2, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 8} |
In[7]:= | BraidIndex[Knot[8, 21]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[8, 21]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[8, 21]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 3, 4, 1} |
In[10]:= | alex = Alexander[Knot[8, 21]][t] |
Out[10]= | -2 4 2
-5 - t + - + 4 t - t
t |
In[11]:= | Conway[Knot[8, 21]][z] |
Out[11]= | 4
1 - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 21], Knot[10, 136]} |
In[13]:= | {KnotDet[Knot[8, 21]], KnotSignature[Knot[8, 21]]} |
Out[13]= | {15, -2} |
In[14]:= | Jones[Knot[8, 21]][q] |
Out[14]= | -7 2 2 3 3 2 2
q - -- + -- - -- + -- - -- + -
6 5 4 3 2 q
q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 21]} |
In[16]:= | A2Invariant[Knot[8, 21]][q] |
Out[16]= | -22 2 -12 -10 -8 2 -4 2
q - --- - q - q + q + -- + q + --
14 6 2
q q q |
In[17]:= | HOMFLYPT[Knot[8, 21]][a, z] |
Out[17]= | 2 4 6 2 2 4 2 6 2 4 4
3 a - 3 a + a + 2 a z - 3 a z + a z - a z |
In[18]:= | Kauffman[Knot[8, 21]][a, z] |
Out[18]= | 2 4 6 3 5 7 2 2 4 2
-3 a - 3 a - a + 2 a z + 4 a z + 2 a z + 3 a z + 5 a z -
8 2 3 3 5 3 7 3 4 4 6 4 8 4
2 a z - a z - 6 a z - 5 a z - 2 a z - a z + a z +
3 5 5 5 7 5 4 6 6 6
a z + 3 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[8, 21]], Vassiliev[3][Knot[8, 21]]} |
Out[19]= | {0, 1} |
In[20]:= | Kh[Knot[8, 21]][q, t] |
Out[20]= | -3 2 1 1 1 1 1 2 1
q + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
q 15 6 13 5 11 5 11 4 9 4 9 3 7 3
q t q t q t q t q t q t q t
1 2 1 1
----- + ----- + ---- + ----
7 2 5 2 5 3
q t q t q t q t |
In[21]:= | ColouredJones[Knot[8, 21], 2][q] |
Out[21]= | -20 2 -18 5 3 4 8 2 8 10 -10
q - --- - q + --- - --- - --- + --- - --- - --- + --- - q -
19 17 16 15 14 13 12 11
q q q q q q q q
10 10 8 6 -4 4 2 1
-- + -- - -- + -- + q - -- + -- + -
9 8 6 5 3 2 q
q q q q q q |