In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[7, 6]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[9, 1, 10, 14],
X[13, 11, 14, 10], X[11, 6, 12, 7], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[7, 6]] |
Out[3]= | GaussCode[-1, 7, -2, 1, -3, 6, -7, 2, -4, 5, -6, 3, -5, 4] |
In[4]:= | DTCode[Knot[7, 6]] |
Out[4]= | DTCode[4, 8, 12, 2, 14, 6, 10] |
In[5]:= | br = BR[Knot[7, 6]] |
Out[5]= | BR[4, {-1, -1, 2, -1, -3, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 7} |
In[7]:= | BraidIndex[Knot[7, 6]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[7, 6]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[7, 6]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 2, 4, 1} |
In[10]:= | alex = Alexander[Knot[7, 6]][t] |
Out[10]= | -2 5 2
-7 - t + - + 5 t - t
t |
In[11]:= | Conway[Knot[7, 6]][z] |
Out[11]= | 2 4
1 + z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[7, 6], Knot[10, 133]} |
In[13]:= | {KnotDet[Knot[7, 6]], KnotSignature[Knot[7, 6]]} |
Out[13]= | {19, -2} |
In[14]:= | Jones[Knot[7, 6]][q] |
Out[14]= | -6 2 3 4 3 3
-2 - q + -- - -- + -- - -- + - + q
5 4 3 2 q
q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[7, 6]} |
In[16]:= | A2Invariant[Knot[7, 6]][q] |
Out[16]= | -20 -18 -16 -12 -10 -6 -4 -2 4
-q - q + q + q + q + q - q + q + q |
In[17]:= | HOMFLYPT[Knot[7, 6]][a, z] |
Out[17]= | 2 4 6 2 2 2 4 2 2 4
1 - a + 2 a - a + z - 2 a z + 2 a z - a z |
In[18]:= | Kauffman[Knot[7, 6]][a, z] |
Out[18]= | 2 4 6 3 7 2 2 2 4 2
1 + a + 2 a + a + a z + 2 a z - a z - 2 z - 4 a z - 4 a z -
6 2 3 3 3 5 3 7 3 4 2 4 4 4
2 a z - 4 a z - 6 a z - a z + a z + z + a z + 2 a z +
6 4 5 3 5 5 5 2 6 4 6
2 a z + 2 a z + 4 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[7, 6]], Vassiliev[3][Knot[7, 6]]} |
Out[19]= | {1, -2} |
In[20]:= | Kh[Knot[7, 6]][q, t] |
Out[20]= | 2 2 1 1 1 2 1 2 2
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2
q q t q t q t q t q t q t q t
1 2 t 3 2
---- + ---- + - + q t + q t
5 3 q
q t q t |
In[21]:= | ColouredJones[Knot[7, 6], 2][q] |
Out[21]= | -17 2 5 7 -12 12 12 3 17 13 4
-4 + q - --- + --- - --- - q + --- - --- - -- + -- - -- - -- +
16 14 13 11 10 9 8 7 6
q q q q q q q q q
16 10 5 12 5 2 3 4
-- - -- - -- + -- - - + 6 q - q - 2 q + q
5 4 3 2 q
q q q q |