In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[7, Alternating, 1]] |
Out[2]= | 7 |
In[3]:= | PD[Link[7, Alternating, 1]] |
Out[3]= | PD[X[6, 1, 7, 2], X[12, 7, 13, 8], X[4, 13, 1, 14], X[10, 6, 11, 5],
X[8, 4, 9, 3], X[14, 10, 5, 9], X[2, 12, 3, 11]] |
In[4]:= | GaussCode[Link[7, Alternating, 1]] |
Out[4]= | GaussCode[{1, -7, 5, -3}, {4, -1, 2, -5, 6, -4, 7, -2, 3, -6}] |
In[5]:= | BR[Link[7, Alternating, 1]] |
Out[5]= | BR[Link[7, Alternating, 1]] |
In[6]:= | alex = Alexander[Link[7, Alternating, 1]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[7, Alternating, 1]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[7, Alternating, 1]], KnotSignature[Link[7, Alternating, 1]]} |
Out[9]= | {Infinity, 1} |
In[10]:= | J=Jones[Link[7, Alternating, 1]][q] |
Out[10]= | -(5/2) 3 3 3/2 5/2 7/2 9/2
q - ---- + ------- - 5 Sqrt[q] + 4 q - 4 q + 3 q - q
3/2 Sqrt[q]
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[7, Alternating, 1]][q] |
Out[12]= | -8 -6 -4 2 2 4 6 12 14
4 - q + q + q + -- + q + 2 q - q - q + q
2
q |
In[13]:= | Kauffman[Link[7, Alternating, 1]][a, z] |
Out[13]= | 2 2 3
1 a 2 z 4 z 2 2 z 3 z 2 2 z
1 - --- - - - --- - --- - 2 a z + 2 z + ---- + ---- + a z - -- +
a z z 3 a 4 2 5
a a a a
3 3 4 4 5 5
5 z 12 z 3 4 3 z z 2 4 4 z 7 z
---- + ----- + 6 a z + z - ---- - -- - a z - ---- - ---- -
3 a 4 2 3 a
a a a a
6
5 6 2 z
3 a z - 2 z - ----
2
a |
In[14]:= | {Vassiliev[2][Link[7, Alternating, 1]], Vassiliev[3][Link[7, Alternating, 1]]} |
Out[14]= | 1
{0, -}
2 |
In[15]:= | Kh[Link[7, Alternating, 1]][q, t] |
Out[15]= | 2 1 2 1 2 1 2 4
4 + 3 q + ----- + ----- + ----- + - + ---- + 2 q t + 2 q t +
6 3 4 2 2 2 t 2
q t q t q t q t
4 2 6 2 6 3 8 3 10 4
2 q t + 2 q t + q t + 2 q t + q t |