L8n2
From Knot Atlas
Jump to navigationJump to search
|
|
|
|
Visit L8n2's page at Knotilus!
Visit L8n2's page at the original Knot Atlas! |
| L8n2 is [math]\displaystyle{ 8^2_{15} }[/math] in the Rolfsen table of links. |
Knot presentations
| Planar diagram presentation | X6172 X14,7,15,8 X15,1,16,4 X9,12,10,13 X3849 X5,11,6,10 X11,5,12,16 X2,14,3,13 |
| Gauss code | {1, -8, -5, 3}, {-6, -1, 2, 5, -4, 6, -7, 4, 8, -2, -3, 7} |
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(u-1) (v-1)}{\sqrt{u} \sqrt{v}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{5/2}+q^{3/2}-2 \sqrt{q}+\frac{1}{\sqrt{q}}-\frac{1}{q^{3/2}}+\frac{1}{q^{5/2}}-\frac{1}{q^{7/2}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z a^3+a^3 z^{-1} -z^3 a-3 z a-2 a z^{-1} +2 z a^{-1} +2 a^{-1} z^{-1} - a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a^2 z^6-z^6-a^3 z^5-2 a z^5-z^5 a^{-1} +4 a^2 z^4+4 z^4+4 a^3 z^3+8 a z^3+4 z^3 a^{-1} -3 a^2 z^2-z^2 a^{-2} -4 z^2-3 a^3 z-8 a z-6 z a^{-1} -z a^{-3} +1+a^3 z^{-1} +2 a z^{-1} +2 a^{-1} z^{-1} + a^{-3} z^{-1} }[/math] (db) |
Vassiliev invariants
| V2 and V3: | (0, [math]\displaystyle{ -\frac{1}{2} }[/math]) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]1 is the signature of L8n2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Link[8, NonAlternating, 2]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, NonAlternating, 2]] |
Out[3]= | PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[15, 1, 16, 4], X[9, 12, 10, 13], X[3, 8, 4, 9], X[5, 11, 6, 10], X[11, 5, 12, 16], X[2, 14, 3, 13]] |
In[4]:= | GaussCode[Link[8, NonAlternating, 2]] |
Out[4]= | GaussCode[{1, -8, -5, 3}, {-6, -1, 2, 5, -4, 6, -7, 4, 8, -2, -3, 7}] |
In[5]:= | BR[Link[8, NonAlternating, 2]] |
Out[5]= | BR[Link[8, NonAlternating, 2]] |
In[6]:= | alex = Alexander[Link[8, NonAlternating, 2]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, NonAlternating, 2]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, NonAlternating, 2]], KnotSignature[Link[8, NonAlternating, 2]]} |
Out[9]= | {Infinity, 1} |
In[10]:= | J=Jones[Link[8, NonAlternating, 2]][q] |
Out[10]= | -(7/2) -(5/2) -(3/2) 1 3/2 5/2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, NonAlternating, 2]][q] |
Out[12]= | -12 -10 -8 -6 4 6 8 10 q + q + q + q + q + q + 2 q + q |
In[13]:= | Kauffman[Link[8, NonAlternating, 2]][a, z] |
Out[13]= | 3 21 2 2 a a z 6 z 3 2 z |
In[14]:= | {Vassiliev[2][Link[8, NonAlternating, 2]], Vassiliev[3][Link[8, NonAlternating, 2]]} |
Out[14]= | 1 |
In[15]:= | Kh[Link[8, NonAlternating, 2]][q, t] |
Out[15]= | -2 2 1 1 1 1 1 2 6 2 |


