In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, NonAlternating, 1]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, NonAlternating, 1]] |
Out[3]= | PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[9, 12, 10, 13],
X[3, 8, 4, 9], X[5, 11, 6, 10], X[11, 5, 12, 16], X[13, 2, 14, 3]] |
In[4]:= | GaussCode[Link[8, NonAlternating, 1]] |
Out[4]= | GaussCode[{1, 8, -5, -3}, {-6, -1, 2, 5, -4, 6, -7, 4, -8, -2, 3, 7}] |
In[5]:= | BR[Link[8, NonAlternating, 1]] |
Out[5]= | BR[Link[8, NonAlternating, 1]] |
In[6]:= | alex = Alexander[Link[8, NonAlternating, 1]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, NonAlternating, 1]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, NonAlternating, 1]], KnotSignature[Link[8, NonAlternating, 1]]} |
Out[9]= | {Infinity, -3} |
In[10]:= | J=Jones[Link[8, NonAlternating, 1]][q] |
Out[10]= | -2 2 2 2 2 1
----- + ---- - ---- + ---- - ---- + ------- - Sqrt[q]
11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, NonAlternating, 1]][q] |
Out[12]= | -22 -20 2 -16 -10 -8 -4 -2 2
1 + q + q + --- + q - q + q + q + q + q
18
q |
In[13]:= | Kauffman[Link[8, NonAlternating, 1]][a, z] |
Out[13]= | 3 5 7
4 a 2 a 2 a a 3 5 7 2 2
a + - + ---- + ---- + -- - 4 a z - 8 a z - 7 a z - 3 a z - a z -
z z z z
4 2 3 3 3 5 3 2 4 4 4 6 4
a z + 4 a z + 10 a z + 6 a z + 3 a z + 2 a z - a z -
5 3 5 5 5 2 6 4 6
a z - 3 a z - 2 a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[8, NonAlternating, 1]], Vassiliev[3][Link[8, NonAlternating, 1]]} |
Out[14]= | 137
{0, -(---)}
24 |
In[15]:= | Kh[Link[8, NonAlternating, 1]][q, t] |
Out[15]= | -4 2 2 1 1 1 1 1 1
q + -- + ------ + ------ + ------ + ----- + ----- + ----- + ---- +
2 12 4 10 4 10 3 8 3 8 2 6 2 6
q q t q t q t q t q t q t q t
1 t 2 2
---- + -- + q t
4 2
q t q |