In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[6, NonAlternating, 1]] |
Out[2]= | 6 |
In[3]:= | PD[Link[6, NonAlternating, 1]] |
Out[3]= | PD[X[6, 1, 7, 2], X[12, 8, 9, 7], X[4, 12, 1, 11], X[5, 11, 6, 10],
X[3, 8, 4, 5], X[9, 3, 10, 2]] |
In[4]:= | GaussCode[Link[6, NonAlternating, 1]] |
Out[4]= | GaussCode[{1, 6, -5, -3}, {-4, -1, 2, 5}, {-6, 4, 3, -2}] |
In[5]:= | BR[Link[6, NonAlternating, 1]] |
Out[5]= | BR[Link[6, NonAlternating, 1]] |
In[6]:= | alex = Alexander[Link[6, NonAlternating, 1]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[6, NonAlternating, 1]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[6, NonAlternating, 1]], KnotSignature[Link[6, NonAlternating, 1]]} |
Out[9]= | {Infinity, 0} |
In[10]:= | J=Jones[Link[6, NonAlternating, 1]][q] |
Out[10]= | 2 4
2 + q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[6, NonAlternating, 1]][q] |
Out[12]= | 2 2 4 6 8 10 12 14
3 + -- + 4 q + 4 q + 4 q + 4 q + 3 q + 2 q + q
2
q |
In[13]:= | Kauffman[Link[6, NonAlternating, 1]][a, z] |
Out[13]= | 2
3 5 -2 1 2 2 2 3 z 3 z 4 z
3 + -- + -- - z - ----- - ----- + ---- + --- - --- - --- - ---- -
4 2 4 2 2 2 3 a z 3 a 4
a a a z a z a z a a
2 3 3 4 4
4 z z z z z
---- + -- + -- + -- + --
2 3 a 4 2
a a a a |
In[14]:= | {Vassiliev[2][Link[6, NonAlternating, 1]], Vassiliev[3][Link[6, NonAlternating, 1]]} |
Out[14]= | 11
{0, -(--)}
6 |
In[15]:= | Kh[Link[6, NonAlternating, 1]][q, t] |
Out[15]= | 2 3 5 2 7 4 9 4
- + 3 q + q + q t + q t + q t + q t
q |