L8a4
|
|
|
|
Visit L8a4's page at Knotilus!
Visit L8a4's page at the original Knot Atlas! |
| L8a4 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8^2_{12}} in the Rolfsen table of links. |
Knot presentations
| Planar diagram presentation | X6172 X10,4,11,3 X12,10,13,9 X16,13,5,14 X14,7,15,8 X8,15,9,16 X2536 X4,12,1,11 |
| Gauss code | {1, -7, 2, -8}, {7, -1, 5, -6, 3, -2, 8, -3, 4, -5, 6, -4} |
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(t(1)-1) (t(2)-1)^3}{\sqrt{t(1)} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{5/2}-3 q^{3/2}+4 \sqrt{q}-\frac{6}{\sqrt{q}}+\frac{5}{q^{3/2}}-\frac{6}{q^{5/2}}+\frac{4}{q^{7/2}}-\frac{2}{q^{9/2}}+\frac{1}{q^{11/2}}} (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z a^5-a^5 z^{-1} +2 z^3 a^3+4 z a^3+3 a^3 z^{-1} -z^5 a-3 z^3 a-4 z a-2 a z^{-1} +z^3 a^{-1} +z a^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^3 z^7-a z^7-2 a^4 z^6-5 a^2 z^6-3 z^6-2 a^5 z^5-4 a^3 z^5-5 a z^5-3 z^5 a^{-1} -a^6 z^4+5 a^2 z^4-z^4 a^{-2} +3 z^4+3 a^5 z^3+9 a^3 z^3+11 a z^3+5 z^3 a^{-1} +2 a^6 z^2+4 a^4 z^2+2 a^2 z^2+z^2 a^{-2} +z^2-2 a^5 z-7 a^3 z-7 a z-2 z a^{-1} -a^6-3 a^4-3 a^2+a^5 z^{-1} +3 a^3 z^{-1} +2 a z^{-1} } (db) |
Vassiliev invariants
| V2 and V3: | (0, 2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -1 is the signature of L8a4. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Link[8, Alternating, 4]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, Alternating, 4]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 4, 11, 3], X[12, 10, 13, 9], X[16, 13, 5, 14], X[14, 7, 15, 8], X[8, 15, 9, 16], X[2, 5, 3, 6], X[4, 12, 1, 11]] |
In[4]:= | GaussCode[Link[8, Alternating, 4]] |
Out[4]= | GaussCode[{1, -7, 2, -8}, {7, -1, 5, -6, 3, -2, 8, -3, 4, -5, 6, -4}] |
In[5]:= | BR[Link[8, Alternating, 4]] |
Out[5]= | BR[Link[8, Alternating, 4]] |
In[6]:= | alex = Alexander[Link[8, Alternating, 4]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, Alternating, 4]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, Alternating, 4]], KnotSignature[Link[8, Alternating, 4]]} |
Out[9]= | {Infinity, -1} |
In[10]:= | J=Jones[Link[8, Alternating, 4]][q] |
Out[10]= | -(11/2) 2 4 6 5 6 3/2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, Alternating, 4]][q] |
Out[12]= | -18 -16 2 -10 2 2 4 -2 6 8 |
In[13]:= | Kauffman[Link[8, Alternating, 4]][a, z] |
Out[13]= | 3 52 4 6 2 a 3 a a 2 z 3 5 |
In[14]:= | {Vassiliev[2][Link[8, Alternating, 4]], Vassiliev[3][Link[8, Alternating, 4]]} |
Out[14]= | {0, 2} |
In[15]:= | Kh[Link[8, Alternating, 4]][q, t] |
Out[15]= | 4 1 1 1 3 1 3 3 |


