In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 52]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 52]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[16, 11, 17, 12], X[14, 8, 15, 7],
X[8, 14, 9, 13], X[18, 15, 13, 16], X[12, 17, 5, 18], X[2, 5, 3, 6],
X[4, 9, 1, 10]] |
In[4]:= | GaussCode[Link[9, Alternating, 52]] |
Out[4]= | GaussCode[{1, -8, 2, -9}, {5, -4, 6, -3, 7, -6},
{8, -1, 4, -5, 9, -2, 3, -7}] |
In[5]:= | BR[Link[9, Alternating, 52]] |
Out[5]= | BR[Link[9, Alternating, 52]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 52]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 52]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 52]], KnotSignature[Link[9, Alternating, 52]]} |
Out[9]= | {Infinity, -2} |
In[10]:= | J=Jones[Link[9, Alternating, 52]][q] |
Out[10]= | -8 3 5 8 7 9 7 5
-2 - q + -- - -- + -- - -- + -- - -- + - + q
7 6 5 4 3 2 q
q q q q q q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 52]][q] |
Out[12]= | -26 -24 2 2 5 3 6 3 3 2 -4 3
-q - q + --- + --- + --- + --- + --- + --- + -- + -- - q + -- +
22 18 16 14 12 10 8 6 2
q q q q q q q q q
4
q |
In[13]:= | Kauffman[Link[9, Alternating, 52]][a, z] |
Out[13]= | 2 4 6 3 5
2 4 6 8 a 2 a a 2 a 2 a
1 - 3 a - 10 a - 9 a - 2 a + -- + ---- + -- - ---- - ---- +
2 2 2 z z
z z z
3 5 7 9 2 2 2 4 2
5 a z + 7 a z + 3 a z + a z - 2 z + 3 a z + 20 a z +
6 2 8 2 3 3 3 5 3 7 3 9 3
20 a z + 5 a z - 2 a z - a z - 2 a z - 5 a z - 2 a z +
4 2 4 4 4 6 4 8 4 5 3 5
z - 3 a z - 19 a z - 22 a z - 7 a z + 2 a z - 2 a z -
5 5 7 5 9 5 2 6 4 6 6 6 8 6
8 a z - 3 a z + a z + 3 a z + 7 a z + 7 a z + 3 a z +
3 7 5 7 7 7 4 8 6 8
3 a z + 6 a z + 3 a z + a z + a z |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 52]], Vassiliev[3][Link[9, Alternating, 52]]} |
Out[14]= | 14
{0, --}
3 |
In[15]:= | Kh[Link[9, Alternating, 52]][q, t] |
Out[15]= | 3 4 1 2 1 3 2 5 5
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- +
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4
q q t q t q t q t q t q t q t
4 3 5 4 2 5 t 3 2
----- + ----- + ----- + ----- + ---- + ---- + - + q t + q t
9 3 7 3 7 2 5 2 5 3 q
q t q t q t q t q t q t |