In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 47]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 47]] |
Out[3]= | PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[10, 13, 5, 14], X[18, 15, 11, 16],
X[14, 7, 15, 8], X[8, 18, 9, 17], X[16, 10, 17, 9], X[2, 5, 3, 6],
X[4, 11, 1, 12]] |
In[4]:= | GaussCode[Link[9, Alternating, 47]] |
Out[4]= | GaussCode[{1, -8, 2, -9}, {8, -1, 5, -6, 7, -3},
{9, -2, 3, -5, 4, -7, 6, -4}] |
In[5]:= | BR[Link[9, Alternating, 47]] |
Out[5]= | BR[Link[9, Alternating, 47]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 47]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 47]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 47]], KnotSignature[Link[9, Alternating, 47]]} |
Out[9]= | {Infinity, -2} |
In[10]:= | J=Jones[Link[9, Alternating, 47]][q] |
Out[10]= | -8 3 5 8 8 10 7 6
-3 - q + -- - -- + -- - -- + -- - -- + - + q
7 6 5 4 3 2 q
q q q q q q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 47]][q] |
Out[12]= | -26 -24 2 2 5 2 5 3 4 4 3
-1 - q - q + --- + --- + --- + --- + --- + --- + -- + -- + -- -
22 18 16 14 12 10 8 6 2
q q q q q q q q q
2 4
q + q |
In[13]:= | Kauffman[Link[9, Alternating, 47]][a, z] |
Out[13]= | 2 4 6 3 5
2 4 6 8 a 2 a a 2 a 2 a 3
-4 a - 9 a - 8 a - 2 a + -- + ---- + -- - ---- - ---- + 3 a z +
2 2 2 z z
z z z
5 7 9 2 2 2 4 2 6 2
5 a z + 3 a z + a z - z + 7 a z + 24 a z + 21 a z +
8 2 3 3 3 7 3 9 3 4 2 4
5 a z - 3 a z - a z - 4 a z - 2 a z + z - 8 a z -
4 4 6 4 8 4 5 3 5 5 5
26 a z - 24 a z - 7 a z + 3 a z - 3 a z - 10 a z -
7 5 9 5 2 6 4 6 6 6 8 6 3 7
3 a z + a z + 5 a z + 10 a z + 8 a z + 3 a z + 4 a z +
5 7 7 7 4 8 6 8
7 a z + 3 a z + a z + a z |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 47]], Vassiliev[3][Link[9, Alternating, 47]]} |
Out[14]= | 11
{0, --}
3 |
In[15]:= | Kh[Link[9, Alternating, 47]][q, t] |
Out[15]= | 3 4 1 2 1 3 2 5 4
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- +
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4
q q t q t q t q t q t q t q t
4 4 6 6 3 4 t 3 2
----- + ----- + ----- + ----- + ---- + ---- + - + 2 q t + q t
9 3 7 3 7 2 5 2 5 3 q
q t q t q t q t q t q t |