8 11

From Knot Atlas
Jump to navigationJump to search

8 10.gif

8_10

8 12.gif

8_12

8 11.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 11's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 11 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X9,16,10,1 X15,6,16,7 X7,14,8,15 X13,8,14,9
Gauss code -1, 4, -3, 1, -2, 6, -7, 8, -5, 3, -4, 2, -8, 7, -6, 5
Dowker-Thistlethwaite code 4 10 12 14 16 2 8 6
Conway Notation [3212]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 9, width is 4,

Braid index is 4

8 11 ML.gif 8 11 AP.gif
[{10, 5}, {1, 8}, {9, 6}, {5, 7}, {8, 10}, {4, 9}, {6, 3}, {2, 4}, {3, 1}, {7, 2}]

[edit Notes on presentations of 8 11]

Knot 8_11.
A graph, knot 8_11.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-9][-1]
Hyperbolic Volume 8.28632
A-Polynomial See Data:8 11/A-polynomial

[edit Notes for 8 11's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 8 11's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 27, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_147, K11n122,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 8 11. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-1012χ
3        11
1       1 -1
-1      31 2
-3     22  0
-5    32   1
-7   22    0
-9  13     -2
-11 12      1
-13 1       -1
-151        1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials