10 140

From Knot Atlas
Jump to navigationJump to search

10 139.gif

10_139

10 141.gif

10_141

10 140.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 140's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 140 at Knotilus!

10_140 is also known as the pretzel knot P(4,3,-3).


Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X11,19,12,18 X14,5,15,6 X6,17,7,18 X16,7,17,8 X8,15,9,16 X13,1,14,20 X19,13,20,12 X9,2,10,3
Gauss code -1, 10, -2, 1, 4, -5, 6, -7, -10, 2, -3, 9, -8, -4, 7, -6, 5, 3, -9, 8
Dowker-Thistlethwaite code 4 10 -14 -16 2 18 20 -8 -6 12
Conway Notation [4,3,21-]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 11, width is 4,

Braid index is 4

10 140 ML.gif 10 140 AP.gif
[{9, 2}, {1, 7}, {6, 8}, {7, 9}, {10, 13}, {8, 12}, {13, 11}, {12, 5}, {4, 6}, {5, 3}, {2, 4}, {3, 10}, {11, 1}]

[edit Notes on presentations of 10 140]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 3
Super bridge index Missing
Nakanishi index 2
Maximal Thurston-Bennequin number [-8][-1]
Hyperbolic Volume 5.21257
A-Polynomial See Data:10 140/A-polynomial

[edit Notes for 10 140's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 10 140's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 9, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {8_20, K11n73, K11n74,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (2, -4)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{20}{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -96}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 140. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-7-6-5-4-3-2-10χ
1       11
-1      110
-3        0
-5    11  0
-7   1    1
-9   1    1
-11 11     0
-13        0
-151       -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials