K11a163

From Knot Atlas
Revision as of 16:13, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a162.gif

K11a162

K11a164.gif

K11a164

K11a163.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a163 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X18,5,19,6 X14,8,15,7 X16,10,17,9 X2,11,3,12 X20,14,21,13 X8,16,9,15 X22,17,1,18 X12,20,13,19 X6,21,7,22
Gauss code 1, -6, 2, -1, 3, -11, 4, -8, 5, -2, 6, -10, 7, -4, 8, -5, 9, -3, 10, -7, 11, -9
Dowker-Thistlethwaite code 4 10 18 14 16 2 20 8 22 12 6
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a163 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a163/ThurstonBennequinNumber
Hyperbolic Volume 15.9193
A-Polynomial See Data:K11a163/A-polynomial

[edit Notes for K11a163's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for K11a163's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 119, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a66,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (2, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11a163. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10123456χ
15           11
13          3 -3
11         51 4
9        83  -5
7       95   4
5      108    -2
3     99     0
1    711      4
-1   58       -3
-3  27        5
-5 15         -4
-7 2          2
-91           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a162.gif

K11a162

K11a164.gif

K11a164