The Alexander-Conway Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(15 intermediate revisions by 9 users not shown)
Line 5: Line 5:
<!--$$?Alexander$$-->
<!--$$?Alexander$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
{{HelpAndAbout1|n=1|s=Alexander}}
n = 2 |
Alexander[K][t] computes the Alexander polynomial of a knot K as a function of the variable t. Alexander[K, r][t] computes a basis of the r'th Alexander ideal of K in Z[t].
n1 = 3 |
{{HelpAndAbout2|n=2|s=Alexander}}
in = <nowiki>Alexander</nowiki> |
The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
out= <nowiki>Alexander[K][t] computes the Alexander polynomial of a knot K as a function of the variable t. Alexander[K, r][t] computes a basis of the r'th Alexander ideal of K in Z[t].</nowiki> |
{{HelpAndAbout3}}
about= <nowiki>The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.</nowiki>}}
<!--END-->
<!--END-->


<!--$$?Conway$$-->
<!--$$?Conway$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
{{Help1|n=3|s=Conway}}
n = 4 |
Conway[K][z] computes the Conway polynomial of a knot K as a function of the variable z.
in = <nowiki>Conway</nowiki> |
{{Help2}}
out= <nowiki>Conway[K][z] computes the Conway polynomial of a knot K as a function of the variable z.</nowiki>}}
<!--END-->
<!--END-->


{{Knot Image|8_18}}
{{Knot Image|8_18|gif}}


The Alexander polynomial <math>A(K)</math> and the Conway polynomial <math>C(K)</math> of a knot <math>K</math> always satisfy <math>A(K)(t)=C(K)(\sqrt{t}-1/\sqrt{t})</math>. Let us verify this relation for the knot [[8_18]]:
The Alexander polynomial <math>A(K)</math> and the Conway polynomial <math>C(K)</math> of a knot <math>K</math> always satisfy <math>A(K)(t)=C(K)(\sqrt{t}-1/\sqrt{t})</math>. Let us verify this relation for the knot [[8_18]]:
Line 25: Line 27:
<!--$$alex = Alexander[Knot[8, 18]][t]$$-->
<!--$$alex = Alexander[Knot[8, 18]][t]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=4}}
{{InOut|
n = 5 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 18]][t]</nowiki></pre>
in = <nowiki>alex = Alexander[Knot[8, 18]][t]</nowiki> |
{{InOut2|n=4}}<pre style="border: 0px; padding: 0em"><nowiki> -3 5 10 2 3
out= <nowiki> -3 5 10 2 3
13 - t + -- - -- - 10 t + 5 t - t
13 - t + -- - -- - 10 t + 5 t - t
2 t
2 t
t</nowiki></pre>
t</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


<!--$$Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]$$-->
<!--$$Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=5}}
{{InOut|
n = 6 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]</nowiki></pre>
in = <nowiki>Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]</nowiki> |
{{InOut2|n=5}}<pre style="border: 0px; padding: 0em"><nowiki> -3 5 10 2 3
out= <nowiki> -3 5 10 2 3
13 - t + -- - -- - 10 t + 5 t - t
13 - t + -- - -- - 10 t + 5 t - t
2 t
2 t
t</nowiki></pre>
t</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


Line 49: Line 51:
<!--$$Abs[alex /. t -> -1]$$-->
<!--$$Abs[alex /. t -> -1]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=6}}
{{InOut|
n = 7 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Abs[alex /. t -> -1]</nowiki></pre>
in = <nowiki>Abs[alex /. t -> -1]</nowiki> |
{{InOut2|n=6}}<pre style="border: 0px; padding: 0em"><nowiki>45</nowiki></pre>
out= <nowiki>45</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


Line 59: Line 61:
<!--$$KnotDet[Knot[8, 18]]$$-->
<!--$$KnotDet[Knot[8, 18]]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=7}}
{{InOut|
n = 8 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotDet[Knot[8, 18]]</nowiki></pre>
{{InOut2|n=7}}<pre style="border: 0px; padding: 0em"><nowiki>45</nowiki></pre>
in = <nowiki>KnotDet[Knot[8, 18]]</nowiki> |
out= <nowiki>45</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


Line 69: Line 71:
<!--$$Coefficient[Conway[Knot[8, 18]][z], z^2]$$-->
<!--$$Coefficient[Conway[Knot[8, 18]][z], z^2]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=8}}
{{InOut|
n = 9 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Coefficient[Conway[Knot[8, 18]][z], z^2]</nowiki></pre>
in = <nowiki>Coefficient[Conway[Knot[8, 18]][z], z^2]</nowiki> |
{{InOut2|n=8}}<pre style="border: 0px; padding: 0em"><nowiki>1</nowiki></pre>
out= <nowiki>1</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


Line 79: Line 81:
<!--$$Vassiliev[2][Knot[8, 18]]$$-->
<!--$$Vassiliev[2][Knot[8, 18]]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=9}}
{{InOut|
n = 10 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Vassiliev[2][Knot[8, 18]]</nowiki></pre>
in = <nowiki>Vassiliev[2][Knot[8, 18]]</nowiki> |
{{InOut2|n=9}}<pre style="border: 0px; padding: 0em"><nowiki>0</nowiki></pre>
out= <nowiki>1</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->

{{Knot Image Pair|K11a99|gif|K11a277|gif}}


Sometimes two knots have the same Alexander polynomial but different Alexander ideals. An example is the pair [[K11a99]] and [[K11a277]]. They have the same Alexander polynomial, but the second Alexander ideal of the first knot is the whole ring <math>{\mathbb Z}[t]</math> while the second Alexander ideal of the second knot is the smaller ideal generated by <math>3</math> and by <math>1+t</math>:
Sometimes two knots have the same Alexander polynomial but different Alexander ideals. An example is the pair [[K11a99]] and [[K11a277]]. They have the same Alexander polynomial, but the second Alexander ideal of the first knot is the whole ring <math>{\mathbb Z}[t]</math> while the second Alexander ideal of the second knot is the smaller ideal generated by <math>3</math> and by <math>1+t</math>:
Line 89: Line 93:
<!--$${K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};$$-->
<!--$${K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{In1|n=10}}
{{In|
n = 11 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>{K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};</nowiki></pre>
in = <nowiki>{K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};</nowiki>}}
{{In2}}
<!--END-->
<!--END-->


<!--$$Alexander[K1] == Alexander[K2]$$-->
<!--$$Alexander[K1] == Alexander[K2]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut1|n=11}}
n = 12 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Alexander[K1] == Alexander[K2]</nowiki></pre>
in = <nowiki>Alexander[K1] == Alexander[K2]</nowiki> |
{{InOut2|n=11}}<pre style="border: 0px; padding: 0em"><nowiki>True</nowiki></pre>
out= <nowiki>True</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


<!--$$Alexander[K1, 2][t]$$-->
<!--$$Alexander[K1, 2][t]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut1|n=12}}
n = 13 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Alexander[K1, 2][t]</nowiki></pre>
{{InOut2|n=12}}<pre style="border: 0px; padding: 0em"><nowiki>{1}</nowiki></pre>
in = <nowiki>Alexander[K1, 2][t]</nowiki> |
out= <nowiki>{1}</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


<!--$$Alexander[K2, 2][t]$$-->
<!--$$Alexander[K2, 2][t]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut1|n=13}}
n = 14 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Alexander[K2, 2][t]</nowiki></pre>
{{InOut2|n=13}}<pre style="border: 0px; padding: 0em"><nowiki>{3, 1 + t}</nowiki></pre>
in = <nowiki>Alexander[K2, 2][t]</nowiki> |
out= <nowiki>{3, 1 + t}</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


Line 122: Line 126:
<!--$$Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}$$-->
<!--$$Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut1|n=14}}
n = 15 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}</nowiki></pre>
in = <nowiki>Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}</nowiki> |
{{InOut2|n=14}}<pre style="border: 0px; padding: 0em"><nowiki>{551, 802}</nowiki></pre>
out= <nowiki>{551, 802}</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->

Latest revision as of 18:21, 21 February 2013


(For In[1] see Setup)

In[2]:= ?Alexander
Alexander[K][t] computes the Alexander polynomial of a knot K as a function of the variable t. Alexander[K, r][t] computes a basis of the r'th Alexander ideal of K in Z[t].
In[3]:= Alexander::about
The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
In[4]:= ?Conway
Conway[K][z] computes the Conway polynomial of a knot K as a function of the variable z.
8 18.gif
8_18

The Alexander polynomial and the Conway polynomial of a knot always satisfy . Let us verify this relation for the knot 8_18:

In[5]:= alex = Alexander[Knot[8, 18]][t]
Out[5]= -3 5 10 2 3 13 - t + -- - -- - 10 t + 5 t - t 2 t t
In[6]:= Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]
Out[6]= -3 5 10 2 3 13 - t + -- - -- - 10 t + 5 t - t 2 t t

The determinant of a knot is . Hence for 8_18 it is

In[7]:= Abs[alex /. t -> -1]
Out[7]= 45

Alternatively (see The Determinant and the Signature):

In[8]:= KnotDet[Knot[8, 18]]
Out[8]= 45

, the (standardly normalized) type 2 Vassiliev invariant of a knot is the coefficient of in its Conway polynomial:

In[9]:= Coefficient[Conway[Knot[8, 18]][z], z^2]
Out[9]= 1

Alternatively (see Finite Type (Vassiliev) Invariants),

In[10]:= Vassiliev[2][Knot[8, 18]]
Out[10]= 1
K11a99.gif
K11a99
K11a277.gif
K11a277

Sometimes two knots have the same Alexander polynomial but different Alexander ideals. An example is the pair K11a99 and K11a277. They have the same Alexander polynomial, but the second Alexander ideal of the first knot is the whole ring while the second Alexander ideal of the second knot is the smaller ideal generated by and by :

In[11]:= {K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};
In[12]:= Alexander[K1] == Alexander[K2]
Out[12]= True
In[13]:= Alexander[K1, 2][t]
Out[13]= {1}
In[14]:= Alexander[K2, 2][t]
Out[14]= {3, 1 + t}

Finally, the Alexander polynomial attains 551 values on the 802 knots known to KnotTheory`:

In[15]:= Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}
Out[15]= {551, 802}