|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 39: |
Line 42: |
|
coloured_jones_3 = <math>-q^{15}+3 q^{14}-5 q^{12}-4 q^{11}+10 q^{10}+13 q^9-16 q^8-25 q^7+12 q^6+44 q^5-q^4-58 q^3-22 q^2+69 q+46-63 q^{-1} -81 q^{-2} +61 q^{-3} +101 q^{-4} -39 q^{-5} -128 q^{-6} +27 q^{-7} +140 q^{-8} -6 q^{-9} -154 q^{-10} -7 q^{-11} +154 q^{-12} +24 q^{-13} -151 q^{-14} -38 q^{-15} +137 q^{-16} +51 q^{-17} -115 q^{-18} -59 q^{-19} +87 q^{-20} +59 q^{-21} -53 q^{-22} -54 q^{-23} +26 q^{-24} +41 q^{-25} -9 q^{-26} -23 q^{-27} -3 q^{-28} +11 q^{-29} +5 q^{-30} -4 q^{-31} - q^{-32} - q^{-33} + q^{-34} </math> | |
|
coloured_jones_3 = <math>-q^{15}+3 q^{14}-5 q^{12}-4 q^{11}+10 q^{10}+13 q^9-16 q^8-25 q^7+12 q^6+44 q^5-q^4-58 q^3-22 q^2+69 q+46-63 q^{-1} -81 q^{-2} +61 q^{-3} +101 q^{-4} -39 q^{-5} -128 q^{-6} +27 q^{-7} +140 q^{-8} -6 q^{-9} -154 q^{-10} -7 q^{-11} +154 q^{-12} +24 q^{-13} -151 q^{-14} -38 q^{-15} +137 q^{-16} +51 q^{-17} -115 q^{-18} -59 q^{-19} +87 q^{-20} +59 q^{-21} -53 q^{-22} -54 q^{-23} +26 q^{-24} +41 q^{-25} -9 q^{-26} -23 q^{-27} -3 q^{-28} +11 q^{-29} +5 q^{-30} -4 q^{-31} - q^{-32} - q^{-33} + q^{-34} </math> | |
|
coloured_jones_4 = <math>q^{26}-3 q^{25}+5 q^{23}+4 q^{21}-17 q^{20}-6 q^{19}+17 q^{18}+11 q^{17}+31 q^{16}-46 q^{15}-47 q^{14}+5 q^{13}+27 q^{12}+121 q^{11}-25 q^{10}-96 q^9-89 q^8-50 q^7+222 q^6+108 q^5-26 q^4-189 q^3-268 q^2+183 q+253+208 q^{-1} -148 q^{-2} -510 q^{-3} -21 q^{-4} +273 q^{-5} +477 q^{-6} +34 q^{-7} -646 q^{-8} -267 q^{-9} +180 q^{-10} +667 q^{-11} +238 q^{-12} -677 q^{-13} -453 q^{-14} +66 q^{-15} +763 q^{-16} +390 q^{-17} -646 q^{-18} -572 q^{-19} -38 q^{-20} +782 q^{-21} +498 q^{-22} -549 q^{-23} -624 q^{-24} -159 q^{-25} +689 q^{-26} +566 q^{-27} -348 q^{-28} -572 q^{-29} -289 q^{-30} +458 q^{-31} +533 q^{-32} -89 q^{-33} -378 q^{-34} -332 q^{-35} +163 q^{-36} +357 q^{-37} +83 q^{-38} -132 q^{-39} -228 q^{-40} -22 q^{-41} +135 q^{-42} +86 q^{-43} +8 q^{-44} -78 q^{-45} -44 q^{-46} +16 q^{-47} +25 q^{-48} +19 q^{-49} -7 q^{-50} -11 q^{-51} -2 q^{-52} +3 q^{-54} + q^{-55} - q^{-56} </math> | |
|
coloured_jones_4 = <math>q^{26}-3 q^{25}+5 q^{23}+4 q^{21}-17 q^{20}-6 q^{19}+17 q^{18}+11 q^{17}+31 q^{16}-46 q^{15}-47 q^{14}+5 q^{13}+27 q^{12}+121 q^{11}-25 q^{10}-96 q^9-89 q^8-50 q^7+222 q^6+108 q^5-26 q^4-189 q^3-268 q^2+183 q+253+208 q^{-1} -148 q^{-2} -510 q^{-3} -21 q^{-4} +273 q^{-5} +477 q^{-6} +34 q^{-7} -646 q^{-8} -267 q^{-9} +180 q^{-10} +667 q^{-11} +238 q^{-12} -677 q^{-13} -453 q^{-14} +66 q^{-15} +763 q^{-16} +390 q^{-17} -646 q^{-18} -572 q^{-19} -38 q^{-20} +782 q^{-21} +498 q^{-22} -549 q^{-23} -624 q^{-24} -159 q^{-25} +689 q^{-26} +566 q^{-27} -348 q^{-28} -572 q^{-29} -289 q^{-30} +458 q^{-31} +533 q^{-32} -89 q^{-33} -378 q^{-34} -332 q^{-35} +163 q^{-36} +357 q^{-37} +83 q^{-38} -132 q^{-39} -228 q^{-40} -22 q^{-41} +135 q^{-42} +86 q^{-43} +8 q^{-44} -78 q^{-45} -44 q^{-46} +16 q^{-47} +25 q^{-48} +19 q^{-49} -7 q^{-50} -11 q^{-51} -2 q^{-52} +3 q^{-54} + q^{-55} - q^{-56} </math> | |
|
coloured_jones_5 = | |
|
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_6 = | |
|
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 48: |
Line 51: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 156]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 156]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[7, 14, 8, 15], X[18, 9, 19, 10], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[7, 14, 8, 15], X[18, 9, 19, 10], |
Line 68: |
Line 71: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 156]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_156_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 156]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_156_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 156]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 156]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 156]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 156]][t]</nowiki></pre></td></tr> |