8 20: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 8 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 20 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-8,2,-1,-3,7,8,-2,-5,6,-7,3,-4,5,-6,4/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=8|k=20|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-8,2,-1,-3,7,8,-2,-5,6,-7,3,-4,5,-6,4/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 8 | |
|||
braid_width = 3 | |
|||
[[Invariants from Braid Theory|Length]] is 8, width is 3. |
|||
braid_index = 3 | |
|||
same_alexander = [[10_140]], [[K11n73]], [[K11n74]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[10_140]], [[K11n73]], [[K11n74]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=18.1818%><table cellpadding=0 cellspacing=0> |
<td width=18.1818%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=9.09091%>-5</td ><td width=9.09091%>-4</td ><td width=9.09091%>-3</td ><td width=9.09091%>-2</td ><td width=9.09091%>-1</td ><td width=9.09091%>0</td ><td width=9.09091%>1</td ><td width=18.1818%>χ</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
||
Line 67: | Line 35: | ||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>-q^2+q+1-2 q^{-1} +2 q^{-2} + q^{-3} -2 q^{-4} + q^{-5} +2 q^{-6} -2 q^{-7} +2 q^{-9} -2 q^{-10} - q^{-11} +2 q^{-12} - q^{-13} - q^{-14} + q^{-15} </math> | |
|||
coloured_jones_3 = <math>q^7-q^6-q^5-q^4+2 q^3+2 q^2-3 q-1+2 q^{-1} +4 q^{-2} -3 q^{-3} -2 q^{-4} + q^{-5} +4 q^{-6} -3 q^{-7} - q^{-8} + q^{-9} +2 q^{-10} -2 q^{-11} + q^{-14} - q^{-17} - q^{-18} + q^{-19} + q^{-20} - q^{-21} -2 q^{-22} + q^{-23} +2 q^{-24} -2 q^{-26} + q^{-28} + q^{-29} - q^{-30} </math> | |
|||
{{Display Coloured Jones|J2=<math>-q^2+q+1-2 q^{-1} +2 q^{-2} + q^{-3} -2 q^{-4} + q^{-5} +2 q^{-6} -2 q^{-7} +2 q^{-9} -2 q^{-10} - q^{-11} +2 q^{-12} - q^{-13} - q^{-14} + q^{-15} </math>|J3=<math>q^7-q^6-q^5-q^4+2 q^3+2 q^2-3 q-1+2 q^{-1} +4 q^{-2} -3 q^{-3} -2 q^{-4} + q^{-5} +4 q^{-6} -3 q^{-7} - q^{-8} + q^{-9} +2 q^{-10} -2 q^{-11} + q^{-14} - q^{-17} - q^{-18} + q^{-19} + q^{-20} - q^{-21} -2 q^{-22} + q^{-23} +2 q^{-24} -2 q^{-26} + q^{-28} + q^{-29} - q^{-30} </math>|J4=<math>-q^{12}+q^{11}+2 q^{10}-q^8-5 q^7+5 q^5+3 q^4-10 q^2-2 q+8+6 q^{-1} +2 q^{-2} -11 q^{-3} -4 q^{-4} +7 q^{-5} +7 q^{-6} +2 q^{-7} -11 q^{-8} -4 q^{-9} +7 q^{-10} +5 q^{-11} +2 q^{-12} -10 q^{-13} -4 q^{-14} +7 q^{-15} +4 q^{-16} +2 q^{-17} -8 q^{-18} -4 q^{-19} +6 q^{-20} +2 q^{-21} +3 q^{-22} -5 q^{-23} -4 q^{-24} +4 q^{-25} +3 q^{-27} -2 q^{-28} -3 q^{-29} +2 q^{-30} -2 q^{-31} +2 q^{-32} - q^{-34} +3 q^{-35} -3 q^{-36} +4 q^{-40} -2 q^{-41} - q^{-42} - q^{-43} - q^{-44} +3 q^{-45} - q^{-48} - q^{-49} + q^{-50} </math>|J5=<math>-q^{16}+2 q^{14}+2 q^{13}-2 q^{11}-6 q^{10}-2 q^9+5 q^8+8 q^7+4 q^6-6 q^5-11 q^4-7 q^3+5 q^2+14 q+10-6 q^{-1} -13 q^{-2} -10 q^{-3} +3 q^{-4} +15 q^{-5} +13 q^{-6} -5 q^{-7} -13 q^{-8} -11 q^{-9} +2 q^{-10} +14 q^{-11} +13 q^{-12} -5 q^{-13} -13 q^{-14} -10 q^{-15} +2 q^{-16} +13 q^{-17} +11 q^{-18} -5 q^{-19} -11 q^{-20} -9 q^{-21} + q^{-22} +11 q^{-23} +10 q^{-24} -2 q^{-25} -9 q^{-26} -9 q^{-27} - q^{-28} +8 q^{-29} +10 q^{-30} + q^{-31} -6 q^{-32} -8 q^{-33} -4 q^{-34} +5 q^{-35} +8 q^{-36} +4 q^{-37} -3 q^{-38} -6 q^{-39} -5 q^{-40} +5 q^{-42} +5 q^{-43} -2 q^{-45} -4 q^{-46} -2 q^{-47} + q^{-48} +3 q^{-49} + q^{-50} + q^{-51} - q^{-52} - q^{-53} - q^{-56} + q^{-58} + q^{-59} + q^{-60} -2 q^{-62} -2 q^{-63} + q^{-65} + q^{-66} +2 q^{-67} -2 q^{-69} - q^{-70} + q^{-73} + q^{-74} - q^{-75} </math>|J6=<math>q^{26}-q^{25}-q^{24}-q^{20}+5 q^{19}+q^{18}-4 q^{15}-7 q^{14}-6 q^{13}+9 q^{12}+7 q^{11}+8 q^{10}+5 q^9-6 q^8-19 q^7-17 q^6+10 q^5+11 q^4+17 q^3+13 q^2-4 q-24-25 q^{-1} +7 q^{-2} +10 q^{-3} +20 q^{-4} +18 q^{-5} -24 q^{-7} -27 q^{-8} +4 q^{-9} +8 q^{-10} +19 q^{-11} +19 q^{-12} + q^{-13} -23 q^{-14} -26 q^{-15} +4 q^{-16} +8 q^{-17} +18 q^{-18} +17 q^{-19} -22 q^{-21} -25 q^{-22} +5 q^{-23} +8 q^{-24} +17 q^{-25} +15 q^{-26} - q^{-27} -19 q^{-28} -23 q^{-29} +5 q^{-30} +5 q^{-31} +14 q^{-32} +14 q^{-33} + q^{-34} -13 q^{-35} -20 q^{-36} +2 q^{-37} + q^{-38} +10 q^{-39} +13 q^{-40} +5 q^{-41} -6 q^{-42} -17 q^{-43} -2 q^{-44} -4 q^{-45} +5 q^{-46} +12 q^{-47} +9 q^{-48} + q^{-49} -12 q^{-50} -4 q^{-51} -9 q^{-52} - q^{-53} +8 q^{-54} +9 q^{-55} +7 q^{-56} -5 q^{-57} -2 q^{-58} -10 q^{-59} -6 q^{-60} +2 q^{-61} +5 q^{-62} +9 q^{-63} + q^{-64} +3 q^{-65} -6 q^{-66} -6 q^{-67} -3 q^{-68} - q^{-69} +6 q^{-70} + q^{-71} +5 q^{-72} -2 q^{-74} -3 q^{-75} -3 q^{-76} +3 q^{-77} -3 q^{-78} +2 q^{-79} + q^{-80} + q^{-81} - q^{-83} +4 q^{-84} -4 q^{-85} - q^{-86} - q^{-87} +5 q^{-91} - q^{-92} - q^{-94} - q^{-95} -2 q^{-96} - q^{-97} +3 q^{-98} + q^{-100} - q^{-103} - q^{-104} + q^{-105} </math>|J7=<math>-q^{35}+q^{34}+q^{33}+q^{32}-2 q^{30}-q^{29}-2 q^{28}-3 q^{27}+4 q^{25}+6 q^{24}+7 q^{23}-q^{21}-7 q^{20}-14 q^{19}-10 q^{18}+11 q^{16}+21 q^{15}+16 q^{14}+6 q^{13}-9 q^{12}-28 q^{11}-26 q^{10}-16 q^9+6 q^8+34 q^7+35 q^6+21 q^5-3 q^4-33 q^3-38 q^2-30 q-3+34 q^{-1} +44 q^{-2} +31 q^{-3} +6 q^{-4} -31 q^{-5} -39 q^{-6} -35 q^{-7} -10 q^{-8} +30 q^{-9} +42 q^{-10} +32 q^{-11} +10 q^{-12} -28 q^{-13} -38 q^{-14} -34 q^{-15} -11 q^{-16} +29 q^{-17} +40 q^{-18} +31 q^{-19} +9 q^{-20} -28 q^{-21} -38 q^{-22} -33 q^{-23} -9 q^{-24} +30 q^{-25} +40 q^{-26} +30 q^{-27} +6 q^{-28} -28 q^{-29} -37 q^{-30} -31 q^{-31} -7 q^{-32} +28 q^{-33} +38 q^{-34} +27 q^{-35} +5 q^{-36} -24 q^{-37} -34 q^{-38} -28 q^{-39} -7 q^{-40} +23 q^{-41} +33 q^{-42} +24 q^{-43} +6 q^{-44} -17 q^{-45} -28 q^{-46} -25 q^{-47} -9 q^{-48} +14 q^{-49} +26 q^{-50} +22 q^{-51} +10 q^{-52} -8 q^{-53} -20 q^{-54} -21 q^{-55} -13 q^{-56} +3 q^{-57} +16 q^{-58} +19 q^{-59} +13 q^{-60} +3 q^{-61} -10 q^{-62} -15 q^{-63} -14 q^{-64} -8 q^{-65} +4 q^{-66} +11 q^{-67} +14 q^{-68} +11 q^{-69} -5 q^{-71} -10 q^{-72} -13 q^{-73} -7 q^{-74} +7 q^{-76} +13 q^{-77} +6 q^{-78} +6 q^{-79} -10 q^{-81} -9 q^{-82} -8 q^{-83} -3 q^{-84} +5 q^{-85} +5 q^{-86} +10 q^{-87} +9 q^{-88} -2 q^{-89} -3 q^{-90} -6 q^{-91} -9 q^{-92} -3 q^{-93} -3 q^{-94} +5 q^{-95} +9 q^{-96} +2 q^{-97} +4 q^{-98} + q^{-99} -5 q^{-100} -3 q^{-101} -6 q^{-102} -2 q^{-103} +4 q^{-104} - q^{-105} +3 q^{-106} +3 q^{-107} +2 q^{-109} -2 q^{-110} -2 q^{-111} +2 q^{-112} -3 q^{-113} - q^{-114} -2 q^{-116} +3 q^{-117} + q^{-118} +3 q^{-120} - q^{-123} -4 q^{-124} - q^{-127} +2 q^{-128} + q^{-129} +2 q^{-130} + q^{-131} -2 q^{-132} - q^{-133} - q^{-135} + q^{-138} + q^{-139} - q^{-140} </math>}} |
|||
coloured_jones_4 = <math>-q^{12}+q^{11}+2 q^{10}-q^8-5 q^7+5 q^5+3 q^4-10 q^2-2 q+8+6 q^{-1} +2 q^{-2} -11 q^{-3} -4 q^{-4} +7 q^{-5} +7 q^{-6} +2 q^{-7} -11 q^{-8} -4 q^{-9} +7 q^{-10} +5 q^{-11} +2 q^{-12} -10 q^{-13} -4 q^{-14} +7 q^{-15} +4 q^{-16} +2 q^{-17} -8 q^{-18} -4 q^{-19} +6 q^{-20} +2 q^{-21} +3 q^{-22} -5 q^{-23} -4 q^{-24} +4 q^{-25} +3 q^{-27} -2 q^{-28} -3 q^{-29} +2 q^{-30} -2 q^{-31} +2 q^{-32} - q^{-34} +3 q^{-35} -3 q^{-36} +4 q^{-40} -2 q^{-41} - q^{-42} - q^{-43} - q^{-44} +3 q^{-45} - q^{-48} - q^{-49} + q^{-50} </math> | |
|||
coloured_jones_5 = <math>-q^{16}+2 q^{14}+2 q^{13}-2 q^{11}-6 q^{10}-2 q^9+5 q^8+8 q^7+4 q^6-6 q^5-11 q^4-7 q^3+5 q^2+14 q+10-6 q^{-1} -13 q^{-2} -10 q^{-3} +3 q^{-4} +15 q^{-5} +13 q^{-6} -5 q^{-7} -13 q^{-8} -11 q^{-9} +2 q^{-10} +14 q^{-11} +13 q^{-12} -5 q^{-13} -13 q^{-14} -10 q^{-15} +2 q^{-16} +13 q^{-17} +11 q^{-18} -5 q^{-19} -11 q^{-20} -9 q^{-21} + q^{-22} +11 q^{-23} +10 q^{-24} -2 q^{-25} -9 q^{-26} -9 q^{-27} - q^{-28} +8 q^{-29} +10 q^{-30} + q^{-31} -6 q^{-32} -8 q^{-33} -4 q^{-34} +5 q^{-35} +8 q^{-36} +4 q^{-37} -3 q^{-38} -6 q^{-39} -5 q^{-40} +5 q^{-42} +5 q^{-43} -2 q^{-45} -4 q^{-46} -2 q^{-47} + q^{-48} +3 q^{-49} + q^{-50} + q^{-51} - q^{-52} - q^{-53} - q^{-56} + q^{-58} + q^{-59} + q^{-60} -2 q^{-62} -2 q^{-63} + q^{-65} + q^{-66} +2 q^{-67} -2 q^{-69} - q^{-70} + q^{-73} + q^{-74} - q^{-75} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{26}-q^{25}-q^{24}-q^{20}+5 q^{19}+q^{18}-4 q^{15}-7 q^{14}-6 q^{13}+9 q^{12}+7 q^{11}+8 q^{10}+5 q^9-6 q^8-19 q^7-17 q^6+10 q^5+11 q^4+17 q^3+13 q^2-4 q-24-25 q^{-1} +7 q^{-2} +10 q^{-3} +20 q^{-4} +18 q^{-5} -24 q^{-7} -27 q^{-8} +4 q^{-9} +8 q^{-10} +19 q^{-11} +19 q^{-12} + q^{-13} -23 q^{-14} -26 q^{-15} +4 q^{-16} +8 q^{-17} +18 q^{-18} +17 q^{-19} -22 q^{-21} -25 q^{-22} +5 q^{-23} +8 q^{-24} +17 q^{-25} +15 q^{-26} - q^{-27} -19 q^{-28} -23 q^{-29} +5 q^{-30} +5 q^{-31} +14 q^{-32} +14 q^{-33} + q^{-34} -13 q^{-35} -20 q^{-36} +2 q^{-37} + q^{-38} +10 q^{-39} +13 q^{-40} +5 q^{-41} -6 q^{-42} -17 q^{-43} -2 q^{-44} -4 q^{-45} +5 q^{-46} +12 q^{-47} +9 q^{-48} + q^{-49} -12 q^{-50} -4 q^{-51} -9 q^{-52} - q^{-53} +8 q^{-54} +9 q^{-55} +7 q^{-56} -5 q^{-57} -2 q^{-58} -10 q^{-59} -6 q^{-60} +2 q^{-61} +5 q^{-62} +9 q^{-63} + q^{-64} +3 q^{-65} -6 q^{-66} -6 q^{-67} -3 q^{-68} - q^{-69} +6 q^{-70} + q^{-71} +5 q^{-72} -2 q^{-74} -3 q^{-75} -3 q^{-76} +3 q^{-77} -3 q^{-78} +2 q^{-79} + q^{-80} + q^{-81} - q^{-83} +4 q^{-84} -4 q^{-85} - q^{-86} - q^{-87} +5 q^{-91} - q^{-92} - q^{-94} - q^{-95} -2 q^{-96} - q^{-97} +3 q^{-98} + q^{-100} - q^{-103} - q^{-104} + q^{-105} </math> | |
|||
coloured_jones_7 = <math>-q^{35}+q^{34}+q^{33}+q^{32}-2 q^{30}-q^{29}-2 q^{28}-3 q^{27}+4 q^{25}+6 q^{24}+7 q^{23}-q^{21}-7 q^{20}-14 q^{19}-10 q^{18}+11 q^{16}+21 q^{15}+16 q^{14}+6 q^{13}-9 q^{12}-28 q^{11}-26 q^{10}-16 q^9+6 q^8+34 q^7+35 q^6+21 q^5-3 q^4-33 q^3-38 q^2-30 q-3+34 q^{-1} +44 q^{-2} +31 q^{-3} +6 q^{-4} -31 q^{-5} -39 q^{-6} -35 q^{-7} -10 q^{-8} +30 q^{-9} +42 q^{-10} +32 q^{-11} +10 q^{-12} -28 q^{-13} -38 q^{-14} -34 q^{-15} -11 q^{-16} +29 q^{-17} +40 q^{-18} +31 q^{-19} +9 q^{-20} -28 q^{-21} -38 q^{-22} -33 q^{-23} -9 q^{-24} +30 q^{-25} +40 q^{-26} +30 q^{-27} +6 q^{-28} -28 q^{-29} -37 q^{-30} -31 q^{-31} -7 q^{-32} +28 q^{-33} +38 q^{-34} +27 q^{-35} +5 q^{-36} -24 q^{-37} -34 q^{-38} -28 q^{-39} -7 q^{-40} +23 q^{-41} +33 q^{-42} +24 q^{-43} +6 q^{-44} -17 q^{-45} -28 q^{-46} -25 q^{-47} -9 q^{-48} +14 q^{-49} +26 q^{-50} +22 q^{-51} +10 q^{-52} -8 q^{-53} -20 q^{-54} -21 q^{-55} -13 q^{-56} +3 q^{-57} +16 q^{-58} +19 q^{-59} +13 q^{-60} +3 q^{-61} -10 q^{-62} -15 q^{-63} -14 q^{-64} -8 q^{-65} +4 q^{-66} +11 q^{-67} +14 q^{-68} +11 q^{-69} -5 q^{-71} -10 q^{-72} -13 q^{-73} -7 q^{-74} +7 q^{-76} +13 q^{-77} +6 q^{-78} +6 q^{-79} -10 q^{-81} -9 q^{-82} -8 q^{-83} -3 q^{-84} +5 q^{-85} +5 q^{-86} +10 q^{-87} +9 q^{-88} -2 q^{-89} -3 q^{-90} -6 q^{-91} -9 q^{-92} -3 q^{-93} -3 q^{-94} +5 q^{-95} +9 q^{-96} +2 q^{-97} +4 q^{-98} + q^{-99} -5 q^{-100} -3 q^{-101} -6 q^{-102} -2 q^{-103} +4 q^{-104} - q^{-105} +3 q^{-106} +3 q^{-107} +2 q^{-109} -2 q^{-110} -2 q^{-111} +2 q^{-112} -3 q^{-113} - q^{-114} -2 q^{-116} +3 q^{-117} + q^{-118} +3 q^{-120} - q^{-123} -4 q^{-124} - q^{-127} +2 q^{-128} + q^{-129} +2 q^{-130} + q^{-131} -2 q^{-132} - q^{-133} - q^{-135} + q^{-138} + q^{-139} - q^{-140} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 20]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 12, 6, 13], X[13, 16, 14, 1], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[8, 20]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 12, 6, 13], X[13, 16, 14, 1], |
|||
X[9, 14, 10, 15], X[15, 10, 16, 11], X[11, 6, 12, 7], X[2, 8, 3, 7]]</nowiki></ |
X[9, 14, 10, 15], X[15, 10, 16, 11], X[11, 6, 12, 7], X[2, 8, 3, 7]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 20]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[8, 20]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 20]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -8, 2, -1, -3, 7, 8, -2, -5, 6, -7, 3, -4, 5, -6, 4]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 20]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, -2, -1, -1, -1, -2}]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[8, 20]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 8}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, -12, 2, -14, -6, -16, -10]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 20]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_20_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[8, 20]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 20]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {1, 1, 1, -2, -1, -1, -1, -2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 20]][t]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 8}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[8, 20]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[8, 20]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:8_20_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[8, 20]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 3, 4, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[8, 20]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 2 2 |
|||
3 + t - - - 2 t + t |
3 + t - - - 2 t + t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 20]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[8, 20]][z]</nowiki></code></td></tr> |
|||
1 + 2 z + z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 + 2 z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 20], Knot[10, 140], Knot[11, NonAlternating, 73], |
|||
Knot[11, NonAlternating, 74]}</nowiki></ |
Knot[11, NonAlternating, 74]}</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 20]], KnotSignature[Knot[8, 20]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[8, 20]], KnotSignature[Knot[8, 20]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 20]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{9, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[8, 20]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 -4 -3 2 1 |
|||
2 - q + q - q + -- - - - q |
2 - q + q - q + -- - - - q |
||
2 q |
2 q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 20]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 20]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[8, 20]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 -14 -12 2 2 2 -2 4 |
|||
-q - q - q + -- + -- + -- + q - q |
-q - q - q + -- + -- + -- + q - q |
||
8 6 4 |
8 6 4 |
||
q q q</nowiki></ |
q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 20]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[8, 20]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 2 2 2 4 2 2 4 |
|||
-1 + 4 a - 2 a - z + 4 a z - a z + a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[8, 20]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 z 3 5 2 2 2 |
|||
-1 - 4 a - 2 a + - + 3 a z + 5 a z + 3 a z + 2 z + 6 a z + |
-1 - 4 a - 2 a + - + 3 a z + 5 a z + 3 a z + 2 z + 6 a z + |
||
a |
a |
||
Line 150: | Line 192: | ||
3 5 5 5 2 6 4 6 |
3 5 5 5 2 6 4 6 |
||
2 a z + a z + a z + a z</nowiki></ |
2 a z + a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 20]], Vassiliev[3][Knot[8, 20]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[8, 20]], Vassiliev[3][Knot[8, 20]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 20]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{2, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[8, 20]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 1 1 1 1 1 1 3 |
|||
- + q + ------ + ----- + ----- + ----- + ----- + --- + q t |
- + q + ------ + ----- + ----- + ----- + ----- + --- + q t |
||
q 11 5 7 4 7 3 5 2 3 2 q t |
q 11 5 7 4 7 3 5 2 3 2 q t |
||
q t q t q t q t q t</nowiki></ |
q t q t q t q t q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 20], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[8, 20], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 -14 -13 2 -11 2 2 2 2 -5 2 |
|||
1 + q - q - q + --- - q - --- + -- - -- + -- + q - -- + |
1 + q - q - q + --- - q - --- + -- - -- + -- + q - -- + |
||
12 10 9 7 6 4 |
12 10 9 7 6 4 |
||
Line 170: | Line 224: | ||
q + -- - - + q - q |
q + -- - - + q - q |
||
2 q |
2 q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
Latest revision as of 17:04, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 8 20's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
8_20 is also known as the pretzel knot P(3,-3,2). Its complement contains no complete totally geodesic immersed surfaces.[citation needed] This appears to be the Ashley/oysterman stopper knot of practical knot tying. |
Knot presentations
Planar diagram presentation | X4251 X8493 X5,12,6,13 X13,16,14,1 X9,14,10,15 X15,10,16,11 X11,6,12,7 X2837 |
Gauss code | 1, -8, 2, -1, -3, 7, 8, -2, -5, 6, -7, 3, -4, 5, -6, 4 |
Dowker-Thistlethwaite code | 4 8 -12 2 -14 -6 -16 -10 |
Conway Notation | [3,21,2-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 8, width is 3, Braid index is 3 |
[{3, 8}, {2, 4}, {1, 3}, {11, 9}, {8, 10}, {9, 5}, {4, 6}, {5, 7}, {6, 11}, {10, 2}, {7, 1}] |
[edit Notes on presentations of 8 20]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 20"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X8493 X5,12,6,13 X13,16,14,1 X9,14,10,15 X15,10,16,11 X11,6,12,7 X2837 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -8, 2, -1, -3, 7, 8, -2, -5, 6, -7, 3, -4, 5, -6, 4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 -12 2 -14 -6 -16 -10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[3,21,2-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 8, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 8}, {2, 4}, {1, 3}, {11, 9}, {8, 10}, {9, 5}, {4, 6}, {5, 7}, {6, 11}, {10, 2}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
[edit Notes for 8 20's three dimensional invariants]
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 20"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 9, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_140, K11n73, K11n74,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 20"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_140, K11n73, K11n74,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (2, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 20. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|