8 20: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 8 |
<!-- provide an anchor so we can return to the top of the page -->
k = 20 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-8,2,-1,-3,7,8,-2,-5,6,-7,3,-4,5,-6,4/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=8|k=20|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-8,2,-1,-3,7,8,-2,-5,6,-7,3,-4,5,-6,4/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>
</table> |
braid_crossings = 8 |

braid_width = 3 |
[[Invariants from Braid Theory|Length]] is 8, width is 3.
braid_index = 3 |

same_alexander = [[10_140]], [[K11n73]], [[K11n74]], |
[[Invariants from Braid Theory|Braid index]] is 3.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[10_140]], [[K11n73]], [[K11n74]], ...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=18.1818%><table cellpadding=0 cellspacing=0>
<td width=18.1818%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=9.09091%>-5</td ><td width=9.09091%>-4</td ><td width=9.09091%>-3</td ><td width=9.09091%>-2</td ><td width=9.09091%>-1</td ><td width=9.09091%>0</td ><td width=9.09091%>1</td ><td width=18.1818%>&chi;</td></tr>
<td width=9.09091%>-5</td ><td width=9.09091%>-4</td ><td width=9.09091%>-3</td ><td width=9.09091%>-2</td ><td width=9.09091%>-1</td ><td width=9.09091%>0</td ><td width=9.09091%>1</td ><td width=18.1818%>&chi;</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>1</td></tr>
<tr align=center><td>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>1</td></tr>
Line 68: Line 35:
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>-q^2+q+1-2 q^{-1} +2 q^{-2} + q^{-3} -2 q^{-4} + q^{-5} +2 q^{-6} -2 q^{-7} +2 q^{-9} -2 q^{-10} - q^{-11} +2 q^{-12} - q^{-13} - q^{-14} + q^{-15} </math> |

coloured_jones_3 = <math>q^7-q^6-q^5-q^4+2 q^3+2 q^2-3 q-1+2 q^{-1} +4 q^{-2} -3 q^{-3} -2 q^{-4} + q^{-5} +4 q^{-6} -3 q^{-7} - q^{-8} + q^{-9} +2 q^{-10} -2 q^{-11} + q^{-14} - q^{-17} - q^{-18} + q^{-19} + q^{-20} - q^{-21} -2 q^{-22} + q^{-23} +2 q^{-24} -2 q^{-26} + q^{-28} + q^{-29} - q^{-30} </math> |
{{Display Coloured Jones|J2=<math>-q^2+q+1-2 q^{-1} +2 q^{-2} + q^{-3} -2 q^{-4} + q^{-5} +2 q^{-6} -2 q^{-7} +2 q^{-9} -2 q^{-10} - q^{-11} +2 q^{-12} - q^{-13} - q^{-14} + q^{-15} </math>|J3=<math>q^7-q^6-q^5-q^4+2 q^3+2 q^2-3 q-1+2 q^{-1} +4 q^{-2} -3 q^{-3} -2 q^{-4} + q^{-5} +4 q^{-6} -3 q^{-7} - q^{-8} + q^{-9} +2 q^{-10} -2 q^{-11} + q^{-14} - q^{-17} - q^{-18} + q^{-19} + q^{-20} - q^{-21} -2 q^{-22} + q^{-23} +2 q^{-24} -2 q^{-26} + q^{-28} + q^{-29} - q^{-30} </math>|J4=<math>-q^{12}+q^{11}+2 q^{10}-q^8-5 q^7+5 q^5+3 q^4-10 q^2-2 q+8+6 q^{-1} +2 q^{-2} -11 q^{-3} -4 q^{-4} +7 q^{-5} +7 q^{-6} +2 q^{-7} -11 q^{-8} -4 q^{-9} +7 q^{-10} +5 q^{-11} +2 q^{-12} -10 q^{-13} -4 q^{-14} +7 q^{-15} +4 q^{-16} +2 q^{-17} -8 q^{-18} -4 q^{-19} +6 q^{-20} +2 q^{-21} +3 q^{-22} -5 q^{-23} -4 q^{-24} +4 q^{-25} +3 q^{-27} -2 q^{-28} -3 q^{-29} +2 q^{-30} -2 q^{-31} +2 q^{-32} - q^{-34} +3 q^{-35} -3 q^{-36} +4 q^{-40} -2 q^{-41} - q^{-42} - q^{-43} - q^{-44} +3 q^{-45} - q^{-48} - q^{-49} + q^{-50} </math>|J5=<math>-q^{16}+2 q^{14}+2 q^{13}-2 q^{11}-6 q^{10}-2 q^9+5 q^8+8 q^7+4 q^6-6 q^5-11 q^4-7 q^3+5 q^2+14 q+10-6 q^{-1} -13 q^{-2} -10 q^{-3} +3 q^{-4} +15 q^{-5} +13 q^{-6} -5 q^{-7} -13 q^{-8} -11 q^{-9} +2 q^{-10} +14 q^{-11} +13 q^{-12} -5 q^{-13} -13 q^{-14} -10 q^{-15} +2 q^{-16} +13 q^{-17} +11 q^{-18} -5 q^{-19} -11 q^{-20} -9 q^{-21} + q^{-22} +11 q^{-23} +10 q^{-24} -2 q^{-25} -9 q^{-26} -9 q^{-27} - q^{-28} +8 q^{-29} +10 q^{-30} + q^{-31} -6 q^{-32} -8 q^{-33} -4 q^{-34} +5 q^{-35} +8 q^{-36} +4 q^{-37} -3 q^{-38} -6 q^{-39} -5 q^{-40} +5 q^{-42} +5 q^{-43} -2 q^{-45} -4 q^{-46} -2 q^{-47} + q^{-48} +3 q^{-49} + q^{-50} + q^{-51} - q^{-52} - q^{-53} - q^{-56} + q^{-58} + q^{-59} + q^{-60} -2 q^{-62} -2 q^{-63} + q^{-65} + q^{-66} +2 q^{-67} -2 q^{-69} - q^{-70} + q^{-73} + q^{-74} - q^{-75} </math>|J6=<math>q^{26}-q^{25}-q^{24}-q^{20}+5 q^{19}+q^{18}-4 q^{15}-7 q^{14}-6 q^{13}+9 q^{12}+7 q^{11}+8 q^{10}+5 q^9-6 q^8-19 q^7-17 q^6+10 q^5+11 q^4+17 q^3+13 q^2-4 q-24-25 q^{-1} +7 q^{-2} +10 q^{-3} +20 q^{-4} +18 q^{-5} -24 q^{-7} -27 q^{-8} +4 q^{-9} +8 q^{-10} +19 q^{-11} +19 q^{-12} + q^{-13} -23 q^{-14} -26 q^{-15} +4 q^{-16} +8 q^{-17} +18 q^{-18} +17 q^{-19} -22 q^{-21} -25 q^{-22} +5 q^{-23} +8 q^{-24} +17 q^{-25} +15 q^{-26} - q^{-27} -19 q^{-28} -23 q^{-29} +5 q^{-30} +5 q^{-31} +14 q^{-32} +14 q^{-33} + q^{-34} -13 q^{-35} -20 q^{-36} +2 q^{-37} + q^{-38} +10 q^{-39} +13 q^{-40} +5 q^{-41} -6 q^{-42} -17 q^{-43} -2 q^{-44} -4 q^{-45} +5 q^{-46} +12 q^{-47} +9 q^{-48} + q^{-49} -12 q^{-50} -4 q^{-51} -9 q^{-52} - q^{-53} +8 q^{-54} +9 q^{-55} +7 q^{-56} -5 q^{-57} -2 q^{-58} -10 q^{-59} -6 q^{-60} +2 q^{-61} +5 q^{-62} +9 q^{-63} + q^{-64} +3 q^{-65} -6 q^{-66} -6 q^{-67} -3 q^{-68} - q^{-69} +6 q^{-70} + q^{-71} +5 q^{-72} -2 q^{-74} -3 q^{-75} -3 q^{-76} +3 q^{-77} -3 q^{-78} +2 q^{-79} + q^{-80} + q^{-81} - q^{-83} +4 q^{-84} -4 q^{-85} - q^{-86} - q^{-87} +5 q^{-91} - q^{-92} - q^{-94} - q^{-95} -2 q^{-96} - q^{-97} +3 q^{-98} + q^{-100} - q^{-103} - q^{-104} + q^{-105} </math>|J7=<math>-q^{35}+q^{34}+q^{33}+q^{32}-2 q^{30}-q^{29}-2 q^{28}-3 q^{27}+4 q^{25}+6 q^{24}+7 q^{23}-q^{21}-7 q^{20}-14 q^{19}-10 q^{18}+11 q^{16}+21 q^{15}+16 q^{14}+6 q^{13}-9 q^{12}-28 q^{11}-26 q^{10}-16 q^9+6 q^8+34 q^7+35 q^6+21 q^5-3 q^4-33 q^3-38 q^2-30 q-3+34 q^{-1} +44 q^{-2} +31 q^{-3} +6 q^{-4} -31 q^{-5} -39 q^{-6} -35 q^{-7} -10 q^{-8} +30 q^{-9} +42 q^{-10} +32 q^{-11} +10 q^{-12} -28 q^{-13} -38 q^{-14} -34 q^{-15} -11 q^{-16} +29 q^{-17} +40 q^{-18} +31 q^{-19} +9 q^{-20} -28 q^{-21} -38 q^{-22} -33 q^{-23} -9 q^{-24} +30 q^{-25} +40 q^{-26} +30 q^{-27} +6 q^{-28} -28 q^{-29} -37 q^{-30} -31 q^{-31} -7 q^{-32} +28 q^{-33} +38 q^{-34} +27 q^{-35} +5 q^{-36} -24 q^{-37} -34 q^{-38} -28 q^{-39} -7 q^{-40} +23 q^{-41} +33 q^{-42} +24 q^{-43} +6 q^{-44} -17 q^{-45} -28 q^{-46} -25 q^{-47} -9 q^{-48} +14 q^{-49} +26 q^{-50} +22 q^{-51} +10 q^{-52} -8 q^{-53} -20 q^{-54} -21 q^{-55} -13 q^{-56} +3 q^{-57} +16 q^{-58} +19 q^{-59} +13 q^{-60} +3 q^{-61} -10 q^{-62} -15 q^{-63} -14 q^{-64} -8 q^{-65} +4 q^{-66} +11 q^{-67} +14 q^{-68} +11 q^{-69} -5 q^{-71} -10 q^{-72} -13 q^{-73} -7 q^{-74} +7 q^{-76} +13 q^{-77} +6 q^{-78} +6 q^{-79} -10 q^{-81} -9 q^{-82} -8 q^{-83} -3 q^{-84} +5 q^{-85} +5 q^{-86} +10 q^{-87} +9 q^{-88} -2 q^{-89} -3 q^{-90} -6 q^{-91} -9 q^{-92} -3 q^{-93} -3 q^{-94} +5 q^{-95} +9 q^{-96} +2 q^{-97} +4 q^{-98} + q^{-99} -5 q^{-100} -3 q^{-101} -6 q^{-102} -2 q^{-103} +4 q^{-104} - q^{-105} +3 q^{-106} +3 q^{-107} +2 q^{-109} -2 q^{-110} -2 q^{-111} +2 q^{-112} -3 q^{-113} - q^{-114} -2 q^{-116} +3 q^{-117} + q^{-118} +3 q^{-120} - q^{-123} -4 q^{-124} - q^{-127} +2 q^{-128} + q^{-129} +2 q^{-130} + q^{-131} -2 q^{-132} - q^{-133} - q^{-135} + q^{-138} + q^{-139} - q^{-140} </math>}}
coloured_jones_4 = <math>-q^{12}+q^{11}+2 q^{10}-q^8-5 q^7+5 q^5+3 q^4-10 q^2-2 q+8+6 q^{-1} +2 q^{-2} -11 q^{-3} -4 q^{-4} +7 q^{-5} +7 q^{-6} +2 q^{-7} -11 q^{-8} -4 q^{-9} +7 q^{-10} +5 q^{-11} +2 q^{-12} -10 q^{-13} -4 q^{-14} +7 q^{-15} +4 q^{-16} +2 q^{-17} -8 q^{-18} -4 q^{-19} +6 q^{-20} +2 q^{-21} +3 q^{-22} -5 q^{-23} -4 q^{-24} +4 q^{-25} +3 q^{-27} -2 q^{-28} -3 q^{-29} +2 q^{-30} -2 q^{-31} +2 q^{-32} - q^{-34} +3 q^{-35} -3 q^{-36} +4 q^{-40} -2 q^{-41} - q^{-42} - q^{-43} - q^{-44} +3 q^{-45} - q^{-48} - q^{-49} + q^{-50} </math> |

coloured_jones_5 = <math>-q^{16}+2 q^{14}+2 q^{13}-2 q^{11}-6 q^{10}-2 q^9+5 q^8+8 q^7+4 q^6-6 q^5-11 q^4-7 q^3+5 q^2+14 q+10-6 q^{-1} -13 q^{-2} -10 q^{-3} +3 q^{-4} +15 q^{-5} +13 q^{-6} -5 q^{-7} -13 q^{-8} -11 q^{-9} +2 q^{-10} +14 q^{-11} +13 q^{-12} -5 q^{-13} -13 q^{-14} -10 q^{-15} +2 q^{-16} +13 q^{-17} +11 q^{-18} -5 q^{-19} -11 q^{-20} -9 q^{-21} + q^{-22} +11 q^{-23} +10 q^{-24} -2 q^{-25} -9 q^{-26} -9 q^{-27} - q^{-28} +8 q^{-29} +10 q^{-30} + q^{-31} -6 q^{-32} -8 q^{-33} -4 q^{-34} +5 q^{-35} +8 q^{-36} +4 q^{-37} -3 q^{-38} -6 q^{-39} -5 q^{-40} +5 q^{-42} +5 q^{-43} -2 q^{-45} -4 q^{-46} -2 q^{-47} + q^{-48} +3 q^{-49} + q^{-50} + q^{-51} - q^{-52} - q^{-53} - q^{-56} + q^{-58} + q^{-59} + q^{-60} -2 q^{-62} -2 q^{-63} + q^{-65} + q^{-66} +2 q^{-67} -2 q^{-69} - q^{-70} + q^{-73} + q^{-74} - q^{-75} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{26}-q^{25}-q^{24}-q^{20}+5 q^{19}+q^{18}-4 q^{15}-7 q^{14}-6 q^{13}+9 q^{12}+7 q^{11}+8 q^{10}+5 q^9-6 q^8-19 q^7-17 q^6+10 q^5+11 q^4+17 q^3+13 q^2-4 q-24-25 q^{-1} +7 q^{-2} +10 q^{-3} +20 q^{-4} +18 q^{-5} -24 q^{-7} -27 q^{-8} +4 q^{-9} +8 q^{-10} +19 q^{-11} +19 q^{-12} + q^{-13} -23 q^{-14} -26 q^{-15} +4 q^{-16} +8 q^{-17} +18 q^{-18} +17 q^{-19} -22 q^{-21} -25 q^{-22} +5 q^{-23} +8 q^{-24} +17 q^{-25} +15 q^{-26} - q^{-27} -19 q^{-28} -23 q^{-29} +5 q^{-30} +5 q^{-31} +14 q^{-32} +14 q^{-33} + q^{-34} -13 q^{-35} -20 q^{-36} +2 q^{-37} + q^{-38} +10 q^{-39} +13 q^{-40} +5 q^{-41} -6 q^{-42} -17 q^{-43} -2 q^{-44} -4 q^{-45} +5 q^{-46} +12 q^{-47} +9 q^{-48} + q^{-49} -12 q^{-50} -4 q^{-51} -9 q^{-52} - q^{-53} +8 q^{-54} +9 q^{-55} +7 q^{-56} -5 q^{-57} -2 q^{-58} -10 q^{-59} -6 q^{-60} +2 q^{-61} +5 q^{-62} +9 q^{-63} + q^{-64} +3 q^{-65} -6 q^{-66} -6 q^{-67} -3 q^{-68} - q^{-69} +6 q^{-70} + q^{-71} +5 q^{-72} -2 q^{-74} -3 q^{-75} -3 q^{-76} +3 q^{-77} -3 q^{-78} +2 q^{-79} + q^{-80} + q^{-81} - q^{-83} +4 q^{-84} -4 q^{-85} - q^{-86} - q^{-87} +5 q^{-91} - q^{-92} - q^{-94} - q^{-95} -2 q^{-96} - q^{-97} +3 q^{-98} + q^{-100} - q^{-103} - q^{-104} + q^{-105} </math> |

coloured_jones_7 = <math>-q^{35}+q^{34}+q^{33}+q^{32}-2 q^{30}-q^{29}-2 q^{28}-3 q^{27}+4 q^{25}+6 q^{24}+7 q^{23}-q^{21}-7 q^{20}-14 q^{19}-10 q^{18}+11 q^{16}+21 q^{15}+16 q^{14}+6 q^{13}-9 q^{12}-28 q^{11}-26 q^{10}-16 q^9+6 q^8+34 q^7+35 q^6+21 q^5-3 q^4-33 q^3-38 q^2-30 q-3+34 q^{-1} +44 q^{-2} +31 q^{-3} +6 q^{-4} -31 q^{-5} -39 q^{-6} -35 q^{-7} -10 q^{-8} +30 q^{-9} +42 q^{-10} +32 q^{-11} +10 q^{-12} -28 q^{-13} -38 q^{-14} -34 q^{-15} -11 q^{-16} +29 q^{-17} +40 q^{-18} +31 q^{-19} +9 q^{-20} -28 q^{-21} -38 q^{-22} -33 q^{-23} -9 q^{-24} +30 q^{-25} +40 q^{-26} +30 q^{-27} +6 q^{-28} -28 q^{-29} -37 q^{-30} -31 q^{-31} -7 q^{-32} +28 q^{-33} +38 q^{-34} +27 q^{-35} +5 q^{-36} -24 q^{-37} -34 q^{-38} -28 q^{-39} -7 q^{-40} +23 q^{-41} +33 q^{-42} +24 q^{-43} +6 q^{-44} -17 q^{-45} -28 q^{-46} -25 q^{-47} -9 q^{-48} +14 q^{-49} +26 q^{-50} +22 q^{-51} +10 q^{-52} -8 q^{-53} -20 q^{-54} -21 q^{-55} -13 q^{-56} +3 q^{-57} +16 q^{-58} +19 q^{-59} +13 q^{-60} +3 q^{-61} -10 q^{-62} -15 q^{-63} -14 q^{-64} -8 q^{-65} +4 q^{-66} +11 q^{-67} +14 q^{-68} +11 q^{-69} -5 q^{-71} -10 q^{-72} -13 q^{-73} -7 q^{-74} +7 q^{-76} +13 q^{-77} +6 q^{-78} +6 q^{-79} -10 q^{-81} -9 q^{-82} -8 q^{-83} -3 q^{-84} +5 q^{-85} +5 q^{-86} +10 q^{-87} +9 q^{-88} -2 q^{-89} -3 q^{-90} -6 q^{-91} -9 q^{-92} -3 q^{-93} -3 q^{-94} +5 q^{-95} +9 q^{-96} +2 q^{-97} +4 q^{-98} + q^{-99} -5 q^{-100} -3 q^{-101} -6 q^{-102} -2 q^{-103} +4 q^{-104} - q^{-105} +3 q^{-106} +3 q^{-107} +2 q^{-109} -2 q^{-110} -2 q^{-111} +2 q^{-112} -3 q^{-113} - q^{-114} -2 q^{-116} +3 q^{-117} + q^{-118} +3 q^{-120} - q^{-123} -4 q^{-124} - q^{-127} +2 q^{-128} + q^{-129} +2 q^{-130} + q^{-131} -2 q^{-132} - q^{-133} - q^{-135} + q^{-138} + q^{-139} - q^{-140} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 20]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 12, 6, 13], X[13, 16, 14, 1],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[8, 20]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 12, 6, 13], X[13, 16, 14, 1],
X[9, 14, 10, 15], X[15, 10, 16, 11], X[11, 6, 12, 7], X[2, 8, 3, 7]]</nowiki></pre></td></tr>
X[9, 14, 10, 15], X[15, 10, 16, 11], X[11, 6, 12, 7], X[2, 8, 3, 7]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 20]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -8, 2, -1, -3, 7, 8, -2, -5, 6, -7, 3, -4, 5, -6, 4]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[8, 20]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 20]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, -12, 2, -14, -6, -16, -10]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -8, 2, -1, -3, 7, 8, -2, -5, 6, -7, 3, -4, 5, -6, 4]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 20]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, -2, -1, -1, -1, -2}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[8, 20]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 8}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[8, 20]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, -12, 2, -14, -6, -16, -10]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<table><tr align=left>

<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 20]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_20_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[8, 20]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 20]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 3, 4, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {1, 1, 1, -2, -1, -1, -1, -2}]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 20]][t]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 8}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[8, 20]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[8, 20]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:8_20_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[8, 20]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 3, 4, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[8, 20]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 2 2
3 + t - - - 2 t + t
3 + t - - - 2 t + t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 20]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[8, 20]][z]</nowiki></code></td></tr>
1 + 2 z + z</nowiki></pre></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 20], Knot[10, 140], Knot[11, NonAlternating, 73],
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4
1 + 2 z + z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 20], Knot[10, 140], Knot[11, NonAlternating, 73],
Knot[11, NonAlternating, 74]}</nowiki></pre></td></tr>
Knot[11, NonAlternating, 74]}</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 20]], KnotSignature[Knot[8, 20]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{9, 0}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[8, 20]], KnotSignature[Knot[8, 20]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 20]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 -4 -3 2 1
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{9, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[8, 20]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 -4 -3 2 1
2 - q + q - q + -- - - - q
2 - q + q - q + -- - - - q
2 q
2 q
q</nowiki></pre></td></tr>
q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 20]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 20]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -14 -12 2 2 2 -2 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 20]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[8, 20]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 -14 -12 2 2 2 -2 4
-q - q - q + -- + -- + -- + q - q
-q - q - q + -- + -- + -- + q - q
8 6 4
8 6 4
q q q</nowiki></pre></td></tr>
q q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 20]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 2 2 2 4 2 2 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
-1 + 4 a - 2 a - z + 4 a z - a z + a z</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[8, 20]][a, z]</nowiki></code></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 20]][a, z]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 z 3 5 2 2 2
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 2 2 2 4 2 2 4
-1 + 4 a - 2 a - z + 4 a z - a z + a z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[8, 20]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 z 3 5 2 2 2
-1 - 4 a - 2 a + - + 3 a z + 5 a z + 3 a z + 2 z + 6 a z +
-1 - 4 a - 2 a + - + 3 a z + 5 a z + 3 a z + 2 z + 6 a z +
a
a
Line 151: Line 192:
3 5 5 5 2 6 4 6
3 5 5 5 2 6 4 6
2 a z + a z + a z + a z</nowiki></pre></td></tr>
2 a z + a z + a z + a z</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 20]], Vassiliev[3][Knot[8, 20]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, -2}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[8, 20]], Vassiliev[3][Knot[8, 20]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 20]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 1 1 1 1 1 1 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{2, -2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[8, 20]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 1 1 1 1 1 1 3
- + q + ------ + ----- + ----- + ----- + ----- + --- + q t
- + q + ------ + ----- + ----- + ----- + ----- + --- + q t
q 11 5 7 4 7 3 5 2 3 2 q t
q 11 5 7 4 7 3 5 2 3 2 q t
q t q t q t q t q t</nowiki></pre></td></tr>
q t q t q t q t q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 20], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -15 -14 -13 2 -11 2 2 2 2 -5 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[8, 20], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 -14 -13 2 -11 2 2 2 2 -5 2
1 + q - q - q + --- - q - --- + -- - -- + -- + q - -- +
1 + q - q - q + --- - q - --- + -- - -- + -- + q - -- +
12 10 9 7 6 4
12 10 9 7 6 4
Line 171: Line 224:
q + -- - - + q - q
q + -- - - + q - q
2 q
2 q
q</nowiki></pre></td></tr>
q</nowiki></code></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Latest revision as of 17:04, 1 September 2005

8 19.gif

8_19

8 21.gif

8_21

8 20.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 20's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 20 at Knotilus!

8_20 is also known as the pretzel knot P(3,-3,2).

Its complement contains no complete totally geodesic immersed surfaces.[citation needed]

This appears to be the Ashley/oysterman stopper knot of practical knot tying.


The Oysterman's stopper[1]

Knot presentations

Planar diagram presentation X4251 X8493 X5,12,6,13 X13,16,14,1 X9,14,10,15 X15,10,16,11 X11,6,12,7 X2837
Gauss code 1, -8, 2, -1, -3, 7, 8, -2, -5, 6, -7, 3, -4, 5, -6, 4
Dowker-Thistlethwaite code 4 8 -12 2 -14 -6 -16 -10
Conway Notation [3,21,2-]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif

Length is 8, width is 3,

Braid index is 3

8 20 ML.gif 8 20 AP.gif
[{3, 8}, {2, 4}, {1, 3}, {11, 9}, {8, 10}, {9, 5}, {4, 6}, {5, 7}, {6, 11}, {10, 2}, {7, 1}]

[edit Notes on presentations of 8 20]

Knot 8_20.
A graph, knot 8_20.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 3
Super bridge index 4
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-2]
Hyperbolic Volume 4.1249
A-Polynomial See Data:8 20/A-polynomial

[edit Notes for 8 20's three dimensional invariants]
8_20 ribbon diagram from A. Kawauchi's text.

Ribbon diagram for 8_20

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 8 20's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 9, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_140, K11n73, K11n74,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (2, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 20. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101χ
3      1-1
1     1 1
-1    12 1
-3   1   1
-5   1   1
-7 11    0
-9       0
-111      -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials