10 116: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 116 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10,6,-1,3,-4,9,-5,10,-8,7,-3,4,-2,5,-6,8,-7/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=116|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10,6,-1,3,-4,9,-5,10,-8,7,-3,4,-2,5,-6,8,-7/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
braid_index = 3 | |
|||
same_alexander = [[K11a7]], [[K11a33]], [[K11a82]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11a7]], [[K11a33]], [[K11a82]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow> </td><td>-3</td></tr> |
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow> </td><td>-3</td></tr> |
||
Line 72: | Line 39: | ||
<tr align=center><td>-13</td><td bgcolor=yellow> </td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-3</td></tr> |
<tr align=center><td>-13</td><td bgcolor=yellow> </td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-3</td></tr> |
||
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{10}-4 q^9+2 q^8+15 q^7-25 q^6-10 q^5+63 q^4-47 q^3-58 q^2+129 q-42-129 q^{-1} +176 q^{-2} -12 q^{-3} -186 q^{-4} +182 q^{-5} +27 q^{-6} -199 q^{-7} +143 q^{-8} +52 q^{-9} -155 q^{-10} +80 q^{-11} +46 q^{-12} -81 q^{-13} +30 q^{-14} +20 q^{-15} -26 q^{-16} +8 q^{-17} +4 q^{-18} -4 q^{-19} + q^{-20} </math> | |
|||
coloured_jones_3 = <math>q^{21}-4 q^{20}+2 q^{19}+9 q^{18}+q^{17}-28 q^{16}-16 q^{15}+63 q^{14}+55 q^{13}-92 q^{12}-143 q^{11}+100 q^{10}+274 q^9-59 q^8-421 q^7-63 q^6+562 q^5+248 q^4-647 q^3-492 q^2+681 q+732-620 q^{-1} -984 q^{-2} +532 q^{-3} +1172 q^{-4} -376 q^{-5} -1341 q^{-6} +223 q^{-7} +1436 q^{-8} -41 q^{-9} -1485 q^{-10} -134 q^{-11} +1457 q^{-12} +305 q^{-13} -1360 q^{-14} -439 q^{-15} +1178 q^{-16} +532 q^{-17} -945 q^{-18} -553 q^{-19} +687 q^{-20} +504 q^{-21} -446 q^{-22} -403 q^{-23} +258 q^{-24} +280 q^{-25} -135 q^{-26} -168 q^{-27} +68 q^{-28} +86 q^{-29} -34 q^{-30} -43 q^{-31} +24 q^{-32} +15 q^{-33} -11 q^{-34} -6 q^{-35} +4 q^{-36} +4 q^{-37} -4 q^{-38} + q^{-39} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{10}-4 q^9+2 q^8+15 q^7-25 q^6-10 q^5+63 q^4-47 q^3-58 q^2+129 q-42-129 q^{-1} +176 q^{-2} -12 q^{-3} -186 q^{-4} +182 q^{-5} +27 q^{-6} -199 q^{-7} +143 q^{-8} +52 q^{-9} -155 q^{-10} +80 q^{-11} +46 q^{-12} -81 q^{-13} +30 q^{-14} +20 q^{-15} -26 q^{-16} +8 q^{-17} +4 q^{-18} -4 q^{-19} + q^{-20} </math>|J3=<math>q^{21}-4 q^{20}+2 q^{19}+9 q^{18}+q^{17}-28 q^{16}-16 q^{15}+63 q^{14}+55 q^{13}-92 q^{12}-143 q^{11}+100 q^{10}+274 q^9-59 q^8-421 q^7-63 q^6+562 q^5+248 q^4-647 q^3-492 q^2+681 q+732-620 q^{-1} -984 q^{-2} +532 q^{-3} +1172 q^{-4} -376 q^{-5} -1341 q^{-6} +223 q^{-7} +1436 q^{-8} -41 q^{-9} -1485 q^{-10} -134 q^{-11} +1457 q^{-12} +305 q^{-13} -1360 q^{-14} -439 q^{-15} +1178 q^{-16} +532 q^{-17} -945 q^{-18} -553 q^{-19} +687 q^{-20} +504 q^{-21} -446 q^{-22} -403 q^{-23} +258 q^{-24} +280 q^{-25} -135 q^{-26} -168 q^{-27} +68 q^{-28} +86 q^{-29} -34 q^{-30} -43 q^{-31} +24 q^{-32} +15 q^{-33} -11 q^{-34} -6 q^{-35} +4 q^{-36} +4 q^{-37} -4 q^{-38} + q^{-39} </math>|J4=<math>q^{36}-4 q^{35}+2 q^{34}+9 q^{33}-5 q^{32}-2 q^{31}-34 q^{30}+8 q^{29}+74 q^{28}+24 q^{27}+4 q^{26}-216 q^{25}-122 q^{24}+215 q^{23}+300 q^{22}+343 q^{21}-528 q^{20}-786 q^{19}-131 q^{18}+662 q^{17}+1639 q^{16}-66 q^{15}-1661 q^{14}-1744 q^{13}-203 q^{12}+3313 q^{11}+2083 q^{10}-1021 q^9-3791 q^8-3267 q^7+3334 q^6+4829 q^5+2117 q^4-4099 q^3-7212 q^2+751 q+5964+6391 q^{-1} -1879 q^{-2} -9881 q^{-3} -3125 q^{-4} +4841 q^{-5} +9831 q^{-6} +1610 q^{-7} -10619 q^{-8} -6624 q^{-9} +2511 q^{-10} +11806 q^{-11} +4979 q^{-12} -10029 q^{-13} -9201 q^{-14} -107 q^{-15} +12510 q^{-16} +7828 q^{-17} -8382 q^{-18} -10782 q^{-19} -2928 q^{-20} +11658 q^{-21} +9912 q^{-22} -5380 q^{-23} -10643 q^{-24} -5643 q^{-25} +8647 q^{-26} +10226 q^{-27} -1497 q^{-28} -8040 q^{-29} -6883 q^{-30} +4236 q^{-31} +7928 q^{-32} +1345 q^{-33} -3948 q^{-34} -5594 q^{-35} +740 q^{-36} +4182 q^{-37} +1805 q^{-38} -811 q^{-39} -2941 q^{-40} -448 q^{-41} +1360 q^{-42} +862 q^{-43} +249 q^{-44} -983 q^{-45} -269 q^{-46} +269 q^{-47} +145 q^{-48} +198 q^{-49} -232 q^{-50} -28 q^{-51} +55 q^{-52} -27 q^{-53} +55 q^{-54} -52 q^{-55} +11 q^{-56} +19 q^{-57} -16 q^{-58} +9 q^{-59} -10 q^{-60} +4 q^{-61} +4 q^{-62} -4 q^{-63} + q^{-64} </math>|J5=<math>q^{55}-4 q^{54}+2 q^{53}+9 q^{52}-5 q^{51}-8 q^{50}-8 q^{49}-10 q^{48}+19 q^{47}+67 q^{46}+29 q^{45}-68 q^{44}-138 q^{43}-147 q^{42}+30 q^{41}+334 q^{40}+487 q^{39}+160 q^{38}-505 q^{37}-1050 q^{36}-893 q^{35}+285 q^{34}+1831 q^{33}+2342 q^{32}+798 q^{31}-2127 q^{30}-4334 q^{29}-3460 q^{28}+999 q^{27}+6200 q^{26}+7571 q^{25}+2554 q^{24}-6270 q^{23}-12227 q^{22}-9117 q^{21}+2976 q^{20}+15598 q^{19}+17665 q^{18}+4795 q^{17}-15096 q^{16}-26243 q^{15}-16852 q^{14}+9094 q^{13}+31894 q^{12}+31088 q^{11}+3192 q^{10}-32018 q^9-44778 q^8-20301 q^7+25193 q^6+54628 q^5+39932 q^4-11723 q^3-58780 q^2-58666 q-6675+56169 q^{-1} +74484 q^{-2} +27311 q^{-3} -48142 q^{-4} -85286 q^{-5} -47681 q^{-6} +35814 q^{-7} +91612 q^{-8} +65983 q^{-9} -22045 q^{-10} -93607 q^{-11} -81195 q^{-12} +7789 q^{-13} +93116 q^{-14} +93558 q^{-15} +5243 q^{-16} -90914 q^{-17} -103446 q^{-18} -17383 q^{-19} +87985 q^{-20} +111762 q^{-21} +28669 q^{-22} -84100 q^{-23} -118820 q^{-24} -40095 q^{-25} +78788 q^{-26} +124391 q^{-27} +52038 q^{-28} -70720 q^{-29} -127652 q^{-30} -64564 q^{-31} +59151 q^{-32} +127042 q^{-33} +76515 q^{-34} -43529 q^{-35} -121029 q^{-36} -86308 q^{-37} +24914 q^{-38} +108768 q^{-39} +91499 q^{-40} -5289 q^{-41} -90533 q^{-42} -90423 q^{-43} -12476 q^{-44} +68371 q^{-45} +82476 q^{-46} +25518 q^{-47} -45362 q^{-48} -68728 q^{-49} -32134 q^{-50} +24779 q^{-51} +51857 q^{-52} +32318 q^{-53} -9270 q^{-54} -34970 q^{-55} -27565 q^{-56} -299 q^{-57} +20677 q^{-58} +20444 q^{-59} +4587 q^{-60} -10469 q^{-61} -13275 q^{-62} -5182 q^{-63} +4292 q^{-64} +7475 q^{-65} +4075 q^{-66} -1180 q^{-67} -3738 q^{-68} -2539 q^{-69} +83 q^{-70} +1550 q^{-71} +1304 q^{-72} +239 q^{-73} -570 q^{-74} -599 q^{-75} -149 q^{-76} +175 q^{-77} +197 q^{-78} +75 q^{-79} -24 q^{-80} -63 q^{-81} -42 q^{-82} +24 q^{-83} +13 q^{-84} -14 q^{-85} +12 q^{-86} +6 q^{-87} -12 q^{-88} +4 q^{-89} +5 q^{-90} -10 q^{-91} +4 q^{-92} +4 q^{-93} -4 q^{-94} + q^{-95} </math>|J6=<math>q^{78}-4 q^{77}+2 q^{76}+9 q^{75}-5 q^{74}-8 q^{73}-14 q^{72}+16 q^{71}+q^{70}+12 q^{69}+72 q^{68}-19 q^{67}-81 q^{66}-162 q^{65}-34 q^{64}+28 q^{63}+188 q^{62}+540 q^{61}+297 q^{60}-144 q^{59}-927 q^{58}-1006 q^{57}-987 q^{56}+9 q^{55}+2170 q^{54}+3033 q^{53}+2596 q^{52}-522 q^{51}-3424 q^{50}-6886 q^{49}-6627 q^{48}-460 q^{47}+7162 q^{46}+13764 q^{45}+12290 q^{44}+5075 q^{43}-11611 q^{42}-25362 q^{41}-25415 q^{40}-10630 q^{39}+16692 q^{38}+38980 q^{37}+48612 q^{36}+23245 q^{35}-21686 q^{34}-63064 q^{33}-76490 q^{32}-44054 q^{31}+20145 q^{30}+96454 q^{29}+118620 q^{28}+75089 q^{27}-24126 q^{26}-128643 q^{25}-173776 q^{24}-123546 q^{23}+28148 q^{22}+174222 q^{21}+243138 q^{20}+169572 q^{19}-20203 q^{18}-230694 q^{17}-333551 q^{16}-221638 q^{15}+26480 q^{14}+301992 q^{13}+418383 q^{12}+289815 q^{11}-47292 q^{10}-399680 q^9-513072 q^8-333339 q^7+93427 q^6+496027 q^5+627460 q^4+349841 q^3-184699 q^2-617876 q-707778-322429 q^{-1} +294204 q^{-2} +774867 q^{-3} +751954 q^{-4} +223348 q^{-5} -458883 q^{-6} -899048 q^{-7} -736858 q^{-8} -79473 q^{-9} +683430 q^{-10} +986413 q^{-11} +625443 q^{-12} -152922 q^{-13} -882116 q^{-14} -1003598 q^{-15} -443143 q^{-16} +469179 q^{-17} +1045038 q^{-18} +901461 q^{-19} +141376 q^{-20} -764887 q^{-21} -1125649 q^{-22} -702379 q^{-23} +263526 q^{-24} +1022958 q^{-25} +1063599 q^{-26} +356307 q^{-27} -650722 q^{-28} -1185242 q^{-29} -879991 q^{-30} +106366 q^{-31} +996800 q^{-32} +1185314 q^{-33} +529585 q^{-34} -551677 q^{-35} -1236161 q^{-36} -1046663 q^{-37} -58709 q^{-38} +951368 q^{-39} +1301981 q^{-40} +734163 q^{-41} -390898 q^{-42} -1236819 q^{-43} -1221615 q^{-44} -307772 q^{-45} +789264 q^{-46} +1345149 q^{-47} +971098 q^{-48} -92361 q^{-49} -1070398 q^{-50} -1307243 q^{-51} -617229 q^{-52} +440482 q^{-53} +1180554 q^{-54} +1109630 q^{-55} +287898 q^{-56} -680215 q^{-57} -1155290 q^{-58} -819959 q^{-59} -50 q^{-60} +772158 q^{-61} +992144 q^{-62} +548003 q^{-63} -202630 q^{-64} -756425 q^{-65} -756111 q^{-66} -303221 q^{-67} +294233 q^{-68} +638692 q^{-69} +536866 q^{-70} +119496 q^{-71} -313121 q^{-72} -475002 q^{-73} -338667 q^{-74} -14632 q^{-75} +264909 q^{-76} +331258 q^{-77} +187090 q^{-78} -41565 q^{-79} -189786 q^{-80} -205301 q^{-81} -93140 q^{-82} +50738 q^{-83} +129144 q^{-84} +112817 q^{-85} +34107 q^{-86} -38504 q^{-87} -76085 q^{-88} -57726 q^{-89} -9448 q^{-90} +29186 q^{-91} +39215 q^{-92} +23198 q^{-93} +2124 q^{-94} -16995 q^{-95} -19362 q^{-96} -8747 q^{-97} +2593 q^{-98} +8263 q^{-99} +6820 q^{-100} +3737 q^{-101} -2050 q^{-102} -4185 q^{-103} -2474 q^{-104} -352 q^{-105} +1034 q^{-106} +1022 q^{-107} +1223 q^{-108} -62 q^{-109} -684 q^{-110} -360 q^{-111} -102 q^{-112} +73 q^{-113} + q^{-114} +271 q^{-115} +14 q^{-116} -111 q^{-117} -13 q^{-118} -2 q^{-119} +13 q^{-120} -46 q^{-121} +50 q^{-122} +7 q^{-123} -25 q^{-124} +8 q^{-125} +5 q^{-127} -10 q^{-128} +4 q^{-129} +4 q^{-130} -4 q^{-131} + q^{-132} </math>|J7=<math>q^{105}-4 q^{104}+2 q^{103}+9 q^{102}-5 q^{101}-8 q^{100}-14 q^{99}+10 q^{98}+27 q^{97}-6 q^{96}+17 q^{95}+24 q^{94}-32 q^{93}-81 q^{92}-140 q^{91}-35 q^{90}+180 q^{89}+203 q^{88}+317 q^{87}+277 q^{86}-69 q^{85}-501 q^{84}-1187 q^{83}-1177 q^{82}-299 q^{81}+772 q^{80}+2326 q^{79}+3310 q^{78}+2759 q^{77}+771 q^{76}-3595 q^{75}-7603 q^{74}-8625 q^{73}-6386 q^{72}+1164 q^{71}+10906 q^{70}+18808 q^{69}+21313 q^{68}+11831 q^{67}-7272 q^{66}-28685 q^{65}-44958 q^{64}-42440 q^{63}-18261 q^{62}+22324 q^{61}+68514 q^{60}+92746 q^{59}+78711 q^{58}+22968 q^{57}-64103 q^{56}-142103 q^{55}-173979 q^{54}-132631 q^{53}-10319 q^{52}+146476 q^{51}+273463 q^{50}+304034 q^{49}+189710 q^{48}-38424 q^{47}-302773 q^{46}-488677 q^{45}-475811 q^{44}-237719 q^{43}+165868 q^{42}+581175 q^{41}+796327 q^{40}+682179 q^{39}+222203 q^{38}-440031 q^{37}-1007750 q^{36}-1207684 q^{35}-869708 q^{34}-49172 q^{33}+922337 q^{32}+1625024 q^{31}+1670699 q^{30}+916490 q^{29}-379123 q^{28}-1699282 q^{27}-2405172 q^{26}-2047942 q^{25}-674546 q^{24}+1219794 q^{23}+2785688 q^{22}+3199093 q^{21}+2139708 q^{20}-94472 q^{19}-2556796 q^{18}-4048701 q^{17}-3761567 q^{16}-1601328 q^{15}+1577925 q^{14}+4295576 q^{13}+5201831 q^{12}+3630757 q^{11}+115205 q^{10}-3754692 q^9-6129725 q^8-5656063 q^7-2320647 q^6+2410339 q^5+6319177 q^4+7335380 q^3+4724899 q^2-414462 q-5700197-8413324 q^{-1} -6996260 q^{-2} -1962291 q^{-3} +4368608 q^{-4} +8770447 q^{-5} +8859134 q^{-6} +4415087 q^{-7} -2531357 q^{-8} -8438363 q^{-9} -10161317 q^{-10} -6671885 q^{-11} +457160 q^{-12} +7560095 q^{-13} +10866184 q^{-14} +8550235 q^{-15} +1610856 q^{-16} -6340984 q^{-17} -11055527 q^{-18} -9971490 q^{-19} -3476329 q^{-20} +4993754 q^{-21} +10863732 q^{-22} +10947851 q^{-23} +5035675 q^{-24} -3692443 q^{-25} -10458859 q^{-26} -11562618 q^{-27} -6254716 q^{-28} +2558510 q^{-29} +9987193 q^{-30} +11928935 q^{-31} +7172709 q^{-32} -1642486 q^{-33} -9565849 q^{-34} -12173638 q^{-35} -7870129 q^{-36} +937575 q^{-37} +9258553 q^{-38} +12405864 q^{-39} +8457565 q^{-40} -379459 q^{-41} -9074976 q^{-42} -12704262 q^{-43} -9050877 q^{-44} -138945 q^{-45} +8964002 q^{-46} +13098623 q^{-47} +9750846 q^{-48} +748305 q^{-49} -8817560 q^{-50} -13551342 q^{-51} -10613901 q^{-52} -1581260 q^{-53} +8482179 q^{-54} +13955752 q^{-55} +11626559 q^{-56} +2728723 q^{-57} -7793083 q^{-58} -14137150 q^{-59} -12681350 q^{-60} -4204675 q^{-61} +6614112 q^{-62} +13889997 q^{-63} +13587239 q^{-64} +5911388 q^{-65} -4900343 q^{-66} -13033080 q^{-67} -14093722 q^{-68} -7635703 q^{-69} +2731817 q^{-70} +11473738 q^{-71} +13965385 q^{-72} +9089906 q^{-73} -331461 q^{-74} -9267914 q^{-75} -13056008 q^{-76} -9977978 q^{-77} -1977404 q^{-78} +6628537 q^{-79} +11374372 q^{-80} +10093465 q^{-81} +3853496 q^{-82} -3892291 q^{-83} -9107156 q^{-84} -9388717 q^{-85} -5030815 q^{-86} +1430079 q^{-87} +6572543 q^{-88} +7997555 q^{-89} +5404833 q^{-90} +459641 q^{-91} -4138335 q^{-92} -6200227 q^{-93} -5051850 q^{-94} -1624008 q^{-95} +2112926 q^{-96} +4328336 q^{-97} +4192792 q^{-98} +2089008 q^{-99} -667941 q^{-100} -2673341 q^{-101} -3113040 q^{-102} -2017173 q^{-103} -178950 q^{-104} +1411284 q^{-105} +2065397 q^{-106} +1634346 q^{-107} +539213 q^{-108} -583518 q^{-109} -1217100 q^{-110} -1153869 q^{-111} -580276 q^{-112} +130472 q^{-113} +627756 q^{-114} +718788 q^{-115} +464786 q^{-116} +62828 q^{-117} -273890 q^{-118} -397793 q^{-119} -312094 q^{-120} -108131 q^{-121} +94482 q^{-122} +195147 q^{-123} +181237 q^{-124} +90431 q^{-125} -18052 q^{-126} -84181 q^{-127} -94081 q^{-128} -58733 q^{-129} -4964 q^{-130} +32043 q^{-131} +43440 q^{-132} +31897 q^{-133} +8031 q^{-134} -9964 q^{-135} -18275 q^{-136} -15802 q^{-137} -5541 q^{-138} +2703 q^{-139} +7231 q^{-140} +6857 q^{-141} +2599 q^{-142} -342 q^{-143} -2372 q^{-144} -2880 q^{-145} -1317 q^{-146} -110 q^{-147} +1004 q^{-148} +1178 q^{-149} +264 q^{-150} +57 q^{-151} -160 q^{-152} -377 q^{-153} -178 q^{-154} -128 q^{-155} +142 q^{-156} +217 q^{-157} -46 q^{-158} -9 q^{-159} +10 q^{-160} -24 q^{-161} -3 q^{-162} -46 q^{-163} +18 q^{-164} +45 q^{-165} -24 q^{-166} -5 q^{-167} +4 q^{-168} +5 q^{-170} -10 q^{-171} +4 q^{-172} +4 q^{-173} -4 q^{-174} + q^{-175} </math>}} |
|||
coloured_jones_4 = <math>q^{36}-4 q^{35}+2 q^{34}+9 q^{33}-5 q^{32}-2 q^{31}-34 q^{30}+8 q^{29}+74 q^{28}+24 q^{27}+4 q^{26}-216 q^{25}-122 q^{24}+215 q^{23}+300 q^{22}+343 q^{21}-528 q^{20}-786 q^{19}-131 q^{18}+662 q^{17}+1639 q^{16}-66 q^{15}-1661 q^{14}-1744 q^{13}-203 q^{12}+3313 q^{11}+2083 q^{10}-1021 q^9-3791 q^8-3267 q^7+3334 q^6+4829 q^5+2117 q^4-4099 q^3-7212 q^2+751 q+5964+6391 q^{-1} -1879 q^{-2} -9881 q^{-3} -3125 q^{-4} +4841 q^{-5} +9831 q^{-6} +1610 q^{-7} -10619 q^{-8} -6624 q^{-9} +2511 q^{-10} +11806 q^{-11} +4979 q^{-12} -10029 q^{-13} -9201 q^{-14} -107 q^{-15} +12510 q^{-16} +7828 q^{-17} -8382 q^{-18} -10782 q^{-19} -2928 q^{-20} +11658 q^{-21} +9912 q^{-22} -5380 q^{-23} -10643 q^{-24} -5643 q^{-25} +8647 q^{-26} +10226 q^{-27} -1497 q^{-28} -8040 q^{-29} -6883 q^{-30} +4236 q^{-31} +7928 q^{-32} +1345 q^{-33} -3948 q^{-34} -5594 q^{-35} +740 q^{-36} +4182 q^{-37} +1805 q^{-38} -811 q^{-39} -2941 q^{-40} -448 q^{-41} +1360 q^{-42} +862 q^{-43} +249 q^{-44} -983 q^{-45} -269 q^{-46} +269 q^{-47} +145 q^{-48} +198 q^{-49} -232 q^{-50} -28 q^{-51} +55 q^{-52} -27 q^{-53} +55 q^{-54} -52 q^{-55} +11 q^{-56} +19 q^{-57} -16 q^{-58} +9 q^{-59} -10 q^{-60} +4 q^{-61} +4 q^{-62} -4 q^{-63} + q^{-64} </math> | |
|||
coloured_jones_5 = <math>q^{55}-4 q^{54}+2 q^{53}+9 q^{52}-5 q^{51}-8 q^{50}-8 q^{49}-10 q^{48}+19 q^{47}+67 q^{46}+29 q^{45}-68 q^{44}-138 q^{43}-147 q^{42}+30 q^{41}+334 q^{40}+487 q^{39}+160 q^{38}-505 q^{37}-1050 q^{36}-893 q^{35}+285 q^{34}+1831 q^{33}+2342 q^{32}+798 q^{31}-2127 q^{30}-4334 q^{29}-3460 q^{28}+999 q^{27}+6200 q^{26}+7571 q^{25}+2554 q^{24}-6270 q^{23}-12227 q^{22}-9117 q^{21}+2976 q^{20}+15598 q^{19}+17665 q^{18}+4795 q^{17}-15096 q^{16}-26243 q^{15}-16852 q^{14}+9094 q^{13}+31894 q^{12}+31088 q^{11}+3192 q^{10}-32018 q^9-44778 q^8-20301 q^7+25193 q^6+54628 q^5+39932 q^4-11723 q^3-58780 q^2-58666 q-6675+56169 q^{-1} +74484 q^{-2} +27311 q^{-3} -48142 q^{-4} -85286 q^{-5} -47681 q^{-6} +35814 q^{-7} +91612 q^{-8} +65983 q^{-9} -22045 q^{-10} -93607 q^{-11} -81195 q^{-12} +7789 q^{-13} +93116 q^{-14} +93558 q^{-15} +5243 q^{-16} -90914 q^{-17} -103446 q^{-18} -17383 q^{-19} +87985 q^{-20} +111762 q^{-21} +28669 q^{-22} -84100 q^{-23} -118820 q^{-24} -40095 q^{-25} +78788 q^{-26} +124391 q^{-27} +52038 q^{-28} -70720 q^{-29} -127652 q^{-30} -64564 q^{-31} +59151 q^{-32} +127042 q^{-33} +76515 q^{-34} -43529 q^{-35} -121029 q^{-36} -86308 q^{-37} +24914 q^{-38} +108768 q^{-39} +91499 q^{-40} -5289 q^{-41} -90533 q^{-42} -90423 q^{-43} -12476 q^{-44} +68371 q^{-45} +82476 q^{-46} +25518 q^{-47} -45362 q^{-48} -68728 q^{-49} -32134 q^{-50} +24779 q^{-51} +51857 q^{-52} +32318 q^{-53} -9270 q^{-54} -34970 q^{-55} -27565 q^{-56} -299 q^{-57} +20677 q^{-58} +20444 q^{-59} +4587 q^{-60} -10469 q^{-61} -13275 q^{-62} -5182 q^{-63} +4292 q^{-64} +7475 q^{-65} +4075 q^{-66} -1180 q^{-67} -3738 q^{-68} -2539 q^{-69} +83 q^{-70} +1550 q^{-71} +1304 q^{-72} +239 q^{-73} -570 q^{-74} -599 q^{-75} -149 q^{-76} +175 q^{-77} +197 q^{-78} +75 q^{-79} -24 q^{-80} -63 q^{-81} -42 q^{-82} +24 q^{-83} +13 q^{-84} -14 q^{-85} +12 q^{-86} +6 q^{-87} -12 q^{-88} +4 q^{-89} +5 q^{-90} -10 q^{-91} +4 q^{-92} +4 q^{-93} -4 q^{-94} + q^{-95} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{78}-4 q^{77}+2 q^{76}+9 q^{75}-5 q^{74}-8 q^{73}-14 q^{72}+16 q^{71}+q^{70}+12 q^{69}+72 q^{68}-19 q^{67}-81 q^{66}-162 q^{65}-34 q^{64}+28 q^{63}+188 q^{62}+540 q^{61}+297 q^{60}-144 q^{59}-927 q^{58}-1006 q^{57}-987 q^{56}+9 q^{55}+2170 q^{54}+3033 q^{53}+2596 q^{52}-522 q^{51}-3424 q^{50}-6886 q^{49}-6627 q^{48}-460 q^{47}+7162 q^{46}+13764 q^{45}+12290 q^{44}+5075 q^{43}-11611 q^{42}-25362 q^{41}-25415 q^{40}-10630 q^{39}+16692 q^{38}+38980 q^{37}+48612 q^{36}+23245 q^{35}-21686 q^{34}-63064 q^{33}-76490 q^{32}-44054 q^{31}+20145 q^{30}+96454 q^{29}+118620 q^{28}+75089 q^{27}-24126 q^{26}-128643 q^{25}-173776 q^{24}-123546 q^{23}+28148 q^{22}+174222 q^{21}+243138 q^{20}+169572 q^{19}-20203 q^{18}-230694 q^{17}-333551 q^{16}-221638 q^{15}+26480 q^{14}+301992 q^{13}+418383 q^{12}+289815 q^{11}-47292 q^{10}-399680 q^9-513072 q^8-333339 q^7+93427 q^6+496027 q^5+627460 q^4+349841 q^3-184699 q^2-617876 q-707778-322429 q^{-1} +294204 q^{-2} +774867 q^{-3} +751954 q^{-4} +223348 q^{-5} -458883 q^{-6} -899048 q^{-7} -736858 q^{-8} -79473 q^{-9} +683430 q^{-10} +986413 q^{-11} +625443 q^{-12} -152922 q^{-13} -882116 q^{-14} -1003598 q^{-15} -443143 q^{-16} +469179 q^{-17} +1045038 q^{-18} +901461 q^{-19} +141376 q^{-20} -764887 q^{-21} -1125649 q^{-22} -702379 q^{-23} +263526 q^{-24} +1022958 q^{-25} +1063599 q^{-26} +356307 q^{-27} -650722 q^{-28} -1185242 q^{-29} -879991 q^{-30} +106366 q^{-31} +996800 q^{-32} +1185314 q^{-33} +529585 q^{-34} -551677 q^{-35} -1236161 q^{-36} -1046663 q^{-37} -58709 q^{-38} +951368 q^{-39} +1301981 q^{-40} +734163 q^{-41} -390898 q^{-42} -1236819 q^{-43} -1221615 q^{-44} -307772 q^{-45} +789264 q^{-46} +1345149 q^{-47} +971098 q^{-48} -92361 q^{-49} -1070398 q^{-50} -1307243 q^{-51} -617229 q^{-52} +440482 q^{-53} +1180554 q^{-54} +1109630 q^{-55} +287898 q^{-56} -680215 q^{-57} -1155290 q^{-58} -819959 q^{-59} -50 q^{-60} +772158 q^{-61} +992144 q^{-62} +548003 q^{-63} -202630 q^{-64} -756425 q^{-65} -756111 q^{-66} -303221 q^{-67} +294233 q^{-68} +638692 q^{-69} +536866 q^{-70} +119496 q^{-71} -313121 q^{-72} -475002 q^{-73} -338667 q^{-74} -14632 q^{-75} +264909 q^{-76} +331258 q^{-77} +187090 q^{-78} -41565 q^{-79} -189786 q^{-80} -205301 q^{-81} -93140 q^{-82} +50738 q^{-83} +129144 q^{-84} +112817 q^{-85} +34107 q^{-86} -38504 q^{-87} -76085 q^{-88} -57726 q^{-89} -9448 q^{-90} +29186 q^{-91} +39215 q^{-92} +23198 q^{-93} +2124 q^{-94} -16995 q^{-95} -19362 q^{-96} -8747 q^{-97} +2593 q^{-98} +8263 q^{-99} +6820 q^{-100} +3737 q^{-101} -2050 q^{-102} -4185 q^{-103} -2474 q^{-104} -352 q^{-105} +1034 q^{-106} +1022 q^{-107} +1223 q^{-108} -62 q^{-109} -684 q^{-110} -360 q^{-111} -102 q^{-112} +73 q^{-113} + q^{-114} +271 q^{-115} +14 q^{-116} -111 q^{-117} -13 q^{-118} -2 q^{-119} +13 q^{-120} -46 q^{-121} +50 q^{-122} +7 q^{-123} -25 q^{-124} +8 q^{-125} +5 q^{-127} -10 q^{-128} +4 q^{-129} +4 q^{-130} -4 q^{-131} + q^{-132} </math> | |
|||
coloured_jones_7 = <math>q^{105}-4 q^{104}+2 q^{103}+9 q^{102}-5 q^{101}-8 q^{100}-14 q^{99}+10 q^{98}+27 q^{97}-6 q^{96}+17 q^{95}+24 q^{94}-32 q^{93}-81 q^{92}-140 q^{91}-35 q^{90}+180 q^{89}+203 q^{88}+317 q^{87}+277 q^{86}-69 q^{85}-501 q^{84}-1187 q^{83}-1177 q^{82}-299 q^{81}+772 q^{80}+2326 q^{79}+3310 q^{78}+2759 q^{77}+771 q^{76}-3595 q^{75}-7603 q^{74}-8625 q^{73}-6386 q^{72}+1164 q^{71}+10906 q^{70}+18808 q^{69}+21313 q^{68}+11831 q^{67}-7272 q^{66}-28685 q^{65}-44958 q^{64}-42440 q^{63}-18261 q^{62}+22324 q^{61}+68514 q^{60}+92746 q^{59}+78711 q^{58}+22968 q^{57}-64103 q^{56}-142103 q^{55}-173979 q^{54}-132631 q^{53}-10319 q^{52}+146476 q^{51}+273463 q^{50}+304034 q^{49}+189710 q^{48}-38424 q^{47}-302773 q^{46}-488677 q^{45}-475811 q^{44}-237719 q^{43}+165868 q^{42}+581175 q^{41}+796327 q^{40}+682179 q^{39}+222203 q^{38}-440031 q^{37}-1007750 q^{36}-1207684 q^{35}-869708 q^{34}-49172 q^{33}+922337 q^{32}+1625024 q^{31}+1670699 q^{30}+916490 q^{29}-379123 q^{28}-1699282 q^{27}-2405172 q^{26}-2047942 q^{25}-674546 q^{24}+1219794 q^{23}+2785688 q^{22}+3199093 q^{21}+2139708 q^{20}-94472 q^{19}-2556796 q^{18}-4048701 q^{17}-3761567 q^{16}-1601328 q^{15}+1577925 q^{14}+4295576 q^{13}+5201831 q^{12}+3630757 q^{11}+115205 q^{10}-3754692 q^9-6129725 q^8-5656063 q^7-2320647 q^6+2410339 q^5+6319177 q^4+7335380 q^3+4724899 q^2-414462 q-5700197-8413324 q^{-1} -6996260 q^{-2} -1962291 q^{-3} +4368608 q^{-4} +8770447 q^{-5} +8859134 q^{-6} +4415087 q^{-7} -2531357 q^{-8} -8438363 q^{-9} -10161317 q^{-10} -6671885 q^{-11} +457160 q^{-12} +7560095 q^{-13} +10866184 q^{-14} +8550235 q^{-15} +1610856 q^{-16} -6340984 q^{-17} -11055527 q^{-18} -9971490 q^{-19} -3476329 q^{-20} +4993754 q^{-21} +10863732 q^{-22} +10947851 q^{-23} +5035675 q^{-24} -3692443 q^{-25} -10458859 q^{-26} -11562618 q^{-27} -6254716 q^{-28} +2558510 q^{-29} +9987193 q^{-30} +11928935 q^{-31} +7172709 q^{-32} -1642486 q^{-33} -9565849 q^{-34} -12173638 q^{-35} -7870129 q^{-36} +937575 q^{-37} +9258553 q^{-38} +12405864 q^{-39} +8457565 q^{-40} -379459 q^{-41} -9074976 q^{-42} -12704262 q^{-43} -9050877 q^{-44} -138945 q^{-45} +8964002 q^{-46} +13098623 q^{-47} +9750846 q^{-48} +748305 q^{-49} -8817560 q^{-50} -13551342 q^{-51} -10613901 q^{-52} -1581260 q^{-53} +8482179 q^{-54} +13955752 q^{-55} +11626559 q^{-56} +2728723 q^{-57} -7793083 q^{-58} -14137150 q^{-59} -12681350 q^{-60} -4204675 q^{-61} +6614112 q^{-62} +13889997 q^{-63} +13587239 q^{-64} +5911388 q^{-65} -4900343 q^{-66} -13033080 q^{-67} -14093722 q^{-68} -7635703 q^{-69} +2731817 q^{-70} +11473738 q^{-71} +13965385 q^{-72} +9089906 q^{-73} -331461 q^{-74} -9267914 q^{-75} -13056008 q^{-76} -9977978 q^{-77} -1977404 q^{-78} +6628537 q^{-79} +11374372 q^{-80} +10093465 q^{-81} +3853496 q^{-82} -3892291 q^{-83} -9107156 q^{-84} -9388717 q^{-85} -5030815 q^{-86} +1430079 q^{-87} +6572543 q^{-88} +7997555 q^{-89} +5404833 q^{-90} +459641 q^{-91} -4138335 q^{-92} -6200227 q^{-93} -5051850 q^{-94} -1624008 q^{-95} +2112926 q^{-96} +4328336 q^{-97} +4192792 q^{-98} +2089008 q^{-99} -667941 q^{-100} -2673341 q^{-101} -3113040 q^{-102} -2017173 q^{-103} -178950 q^{-104} +1411284 q^{-105} +2065397 q^{-106} +1634346 q^{-107} +539213 q^{-108} -583518 q^{-109} -1217100 q^{-110} -1153869 q^{-111} -580276 q^{-112} +130472 q^{-113} +627756 q^{-114} +718788 q^{-115} +464786 q^{-116} +62828 q^{-117} -273890 q^{-118} -397793 q^{-119} -312094 q^{-120} -108131 q^{-121} +94482 q^{-122} +195147 q^{-123} +181237 q^{-124} +90431 q^{-125} -18052 q^{-126} -84181 q^{-127} -94081 q^{-128} -58733 q^{-129} -4964 q^{-130} +32043 q^{-131} +43440 q^{-132} +31897 q^{-133} +8031 q^{-134} -9964 q^{-135} -18275 q^{-136} -15802 q^{-137} -5541 q^{-138} +2703 q^{-139} +7231 q^{-140} +6857 q^{-141} +2599 q^{-142} -342 q^{-143} -2372 q^{-144} -2880 q^{-145} -1317 q^{-146} -110 q^{-147} +1004 q^{-148} +1178 q^{-149} +264 q^{-150} +57 q^{-151} -160 q^{-152} -377 q^{-153} -178 q^{-154} -128 q^{-155} +142 q^{-156} +217 q^{-157} -46 q^{-158} -9 q^{-159} +10 q^{-160} -24 q^{-161} -3 q^{-162} -46 q^{-163} +18 q^{-164} +45 q^{-165} -24 q^{-166} -5 q^{-167} +4 q^{-168} +5 q^{-170} -10 q^{-171} +4 q^{-172} +4 q^{-173} -4 q^{-174} + q^{-175} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 116]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[16, 3, 17, 4], X[14, 7, 15, 8], X[8, 15, 9, 16], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 116]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[16, 3, 17, 4], X[14, 7, 15, 8], X[8, 15, 9, 16], |
|||
X[10, 18, 11, 17], X[18, 6, 19, 5], X[20, 13, 1, 14], |
X[10, 18, 11, 17], X[18, 6, 19, 5], X[20, 13, 1, 14], |
||
X[12, 19, 13, 20], X[2, 10, 3, 9], X[4, 11, 5, 12]]</nowiki></ |
X[12, 19, 13, 20], X[2, 10, 3, 9], X[4, 11, 5, 12]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 116]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 116]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -9, 2, -10, 6, -1, 3, -4, 9, -5, 10, -8, 7, -3, 4, -2, 5, |
|||
-6, 8, -7]</nowiki></ |
-6, 8, -7]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 116]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 116]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 116]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 16, 18, 14, 2, 4, 20, 8, 10, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 116]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, 2, -1, -1, 2, -1, 2, -1, 2}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 116]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_116_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 116]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 116]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 116]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 116]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_116_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 116]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 4, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 116]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 5 12 19 2 3 4 |
|||
-21 - t + -- - -- + -- + 19 t - 12 t + 5 t - t |
-21 - t + -- - -- + -- + 19 t - 12 t + 5 t - t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 116]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 116]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 6 8 |
|||
1 - 2 z - 3 z - z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 116], Knot[11, Alternating, 7], Knot[11, Alternating, 33], |
|||
Knot[11, Alternating, 82]}</nowiki></ |
Knot[11, Alternating, 82]}</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 116]], KnotSignature[Knot[10, 116]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 116]], KnotSignature[Knot[10, 116]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 116]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{95, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 116]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 4 8 12 15 16 15 2 3 |
|||
-11 + q - -- + -- - -- + -- - -- + -- + 8 q - 4 q + q |
-11 + q - -- + -- - -- + -- - -- + -- + 8 q - 4 q + q |
||
6 5 4 3 2 q |
6 5 4 3 2 q |
||
q q q q q</nowiki></ |
q q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 116]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 116]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 116]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -20 2 2 2 2 3 4 3 3 2 4 |
|||
1 + q - --- + --- - --- + --- - -- + -- - -- + -- - q + 2 q - |
1 + q - --- + --- - --- + --- - -- + -- - -- + -- - q + 2 q - |
||
18 16 14 10 8 6 4 2 |
18 16 14 10 8 6 4 2 |
||
Line 148: | Line 181: | ||
6 8 |
6 8 |
||
2 q + q</nowiki></ |
2 q + q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 116]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 116]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 2 4 2 4 4 4 6 |
|||
1 + 2 z - 4 a z + 2 a z + 3 z - 8 a z + 3 a z + z - |
1 + 2 z - 4 a z + 2 a z + 3 z - 8 a z + 3 a z + z - |
||
2 6 4 6 2 8 |
2 6 4 6 2 8 |
||
5 a z + a z - a z</nowiki></ |
5 a z + a z - a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 116]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 116]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
z 3 5 2 z 2 2 4 2 6 2 |
z 3 5 2 z 2 2 4 2 6 2 |
||
1 - - - 3 a z - 3 a z - a z - z + -- - 3 a z + a z + 2 a z + |
1 - - - 3 a z - 3 a z - a z - z + -- - 3 a z + a z + 2 a z + |
||
Line 187: | Line 228: | ||
9 3 9 |
9 3 9 |
||
3 a z + 3 a z</nowiki></ |
3 a z + 3 a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 116]], Vassiliev[3][Knot[10, 116]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 116]], Vassiliev[3][Knot[10, 116]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 116]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{0, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 116]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>7 9 1 3 1 5 3 7 5 |
|||
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
||
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
||
Line 204: | Line 253: | ||
3 3 5 3 7 4 |
3 3 5 3 7 4 |
||
q t + 3 q t + q t</nowiki></ |
q t + 3 q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 116], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 116], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -20 4 4 8 26 20 30 81 46 80 |
|||
-42 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- - |
-42 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- - |
||
19 18 17 16 15 14 13 12 11 |
19 18 17 16 15 14 13 12 11 |
||
Line 218: | Line 271: | ||
2 3 4 5 6 7 8 9 10 |
2 3 4 5 6 7 8 9 10 |
||
58 q - 47 q + 63 q - 10 q - 25 q + 15 q + 2 q - 4 q + q</nowiki></ |
58 q - 47 q + 63 q - 10 q - 25 q + 15 q + 2 q - 4 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Latest revision as of 17:01, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 116's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X16,3,17,4 X14,7,15,8 X8,15,9,16 X10,18,11,17 X18,6,19,5 X20,13,1,14 X12,19,13,20 X2,10,3,9 X4,11,5,12 |
Gauss code | 1, -9, 2, -10, 6, -1, 3, -4, 9, -5, 10, -8, 7, -3, 4, -2, 5, -6, 8, -7 |
Dowker-Thistlethwaite code | 6 16 18 14 2 4 20 8 10 12 |
Conway Notation | [8*2:2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{3, 12}, {2, 7}, {4, 8}, {7, 11}, {5, 3}, {6, 4}, {1, 5}, {12, 9}, {8, 10}, {9, 2}, {11, 6}, {10, 1}] |
[edit Notes on presentations of 10 116]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 116"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X16,3,17,4 X14,7,15,8 X8,15,9,16 X10,18,11,17 X18,6,19,5 X20,13,1,14 X12,19,13,20 X2,10,3,9 X4,11,5,12 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -9, 2, -10, 6, -1, 3, -4, 9, -5, 10, -8, 7, -3, 4, -2, 5, -6, 8, -7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 16 18 14 2 4 20 8 10 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[8*2:2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 12}, {2, 7}, {4, 8}, {7, 11}, {5, 3}, {6, 4}, {1, 5}, {12, 9}, {8, 10}, {9, 2}, {11, 6}, {10, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 116"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 95, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a7, K11a33, K11a82,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 116"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a7, K11a33, K11a82,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (0, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 116. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|