The Alexander-Conway Polynomial: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(14 intermediate revisions by 8 users not shown) | |||
Line 6: | Line 6: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpAndAbout| |
{{HelpAndAbout| |
||
n = |
n = 2 | |
||
n1 = |
n1 = 3 | |
||
in = <nowiki>Alexander</nowiki> | |
in = <nowiki>Alexander</nowiki> | |
||
out= <nowiki>Alexander[K][t] computes the Alexander polynomial of a knot K as a function of the variable t. Alexander[K, r][t] computes a basis of the r'th Alexander ideal of K in Z[t].</nowiki> | |
out= <nowiki>Alexander[K][t] computes the Alexander polynomial of a knot K as a function of the variable t. Alexander[K, r][t] computes a basis of the r'th Alexander ideal of K in Z[t].</nowiki> | |
||
Line 16: | Line 16: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpLine| |
{{HelpLine| |
||
n = |
n = 4 | |
||
in = <nowiki>Conway</nowiki> | |
in = <nowiki>Conway</nowiki> | |
||
out= <nowiki>Conway[K][z] computes the Conway polynomial of a knot K as a function of the variable z.</nowiki>}} |
out= <nowiki>Conway[K][z] computes the Conway polynomial of a knot K as a function of the variable z.</nowiki>}} |
||
<!--END--> |
<!--END--> |
||
{{Knot Image|8_18}} |
{{Knot Image|8_18|gif}} |
||
The Alexander polynomial <math>A(K)</math> and the Conway polynomial <math>C(K)</math> of a knot <math>K</math> always satisfy <math>A(K)(t)=C(K)(\sqrt{t}-1/\sqrt{t})</math>. Let us verify this relation for the knot [[8_18]]: |
The Alexander polynomial <math>A(K)</math> and the Conway polynomial <math>C(K)</math> of a knot <math>K</math> always satisfy <math>A(K)(t)=C(K)(\sqrt{t}-1/\sqrt{t})</math>. Let us verify this relation for the knot [[8_18]]: |
||
Line 28: | Line 28: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 5 | |
||
in = <nowiki>alex = Alexander[Knot[8, 18]][t]</nowiki> | |
in = <nowiki>alex = Alexander[Knot[8, 18]][t]</nowiki> | |
||
out= <nowiki> -3 5 10 2 3 |
out= <nowiki> -3 5 10 2 3 |
||
Line 39: | Line 39: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 6 | |
||
in = <nowiki>Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]</nowiki> | |
in = <nowiki>Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]</nowiki> | |
||
out= <nowiki> -3 5 10 2 3 |
out= <nowiki> -3 5 10 2 3 |
||
Line 52: | Line 52: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 7 | |
||
in = <nowiki>Abs[alex /. t -> -1]</nowiki> | |
in = <nowiki>Abs[alex /. t -> -1]</nowiki> | |
||
out= <nowiki>45</nowiki>}} |
out= <nowiki>45</nowiki>}} |
||
Line 62: | Line 62: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 8 | |
||
in = <nowiki>KnotDet[Knot[8, 18]]</nowiki> | |
in = <nowiki>KnotDet[Knot[8, 18]]</nowiki> | |
||
out= <nowiki>45</nowiki>}} |
out= <nowiki>45</nowiki>}} |
||
Line 72: | Line 72: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 9 | |
||
in = <nowiki>Coefficient[Conway[Knot[8, 18]][z], z^2]</nowiki> | |
in = <nowiki>Coefficient[Conway[Knot[8, 18]][z], z^2]</nowiki> | |
||
out= <nowiki>1</nowiki>}} |
out= <nowiki>1</nowiki>}} |
||
Line 82: | Line 82: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 10 | |
||
in = <nowiki>Vassiliev[2][Knot[8, 18]]</nowiki> | |
in = <nowiki>Vassiliev[2][Knot[8, 18]]</nowiki> | |
||
out= <nowiki>1</nowiki>}} |
out= <nowiki>1</nowiki>}} |
||
<!--END--> |
<!--END--> |
||
{{Knot Image Pair|K11a99|gif|K11a277|gif}} |
|||
Sometimes two knots have the same Alexander polynomial but different Alexander ideals. An example is the pair [[K11a99]] and [[K11a277]]. They have the same Alexander polynomial, but the second Alexander ideal of the first knot is the whole ring <math>{\mathbb Z}[t]</math> while the second Alexander ideal of the second knot is the smaller ideal generated by <math>3</math> and by <math>1+t</math>: |
Sometimes two knots have the same Alexander polynomial but different Alexander ideals. An example is the pair [[K11a99]] and [[K11a277]]. They have the same Alexander polynomial, but the second Alexander ideal of the first knot is the whole ring <math>{\mathbb Z}[t]</math> while the second Alexander ideal of the second knot is the smaller ideal generated by <math>3</math> and by <math>1+t</math>: |
||
Line 92: | Line 94: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{In| |
{{In| |
||
n = |
n = 11 | |
||
in = <nowiki>{K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};</nowiki>}} |
in = <nowiki>{K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};</nowiki>}} |
||
<!--END--> |
<!--END--> |
||
Line 99: | Line 101: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 12 | |
||
in = <nowiki>Alexander[K1] == Alexander[K2]</nowiki> | |
in = <nowiki>Alexander[K1] == Alexander[K2]</nowiki> | |
||
out= <nowiki>True</nowiki>}} |
out= <nowiki>True</nowiki>}} |
||
Line 107: | Line 109: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 13 | |
||
in = <nowiki>Alexander[K1, 2][t]</nowiki> | |
in = <nowiki>Alexander[K1, 2][t]</nowiki> | |
||
out= <nowiki>{1}</nowiki>}} |
out= <nowiki>{1}</nowiki>}} |
||
Line 115: | Line 117: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 14 | |
||
in = <nowiki>Alexander[K2, 2][t]</nowiki> | |
in = <nowiki>Alexander[K2, 2][t]</nowiki> | |
||
out= <nowiki>{3, 1 + t}</nowiki>}} |
out= <nowiki>{3, 1 + t}</nowiki>}} |
||
Line 125: | Line 127: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 15 | |
||
in = <nowiki>Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}</nowiki> | |
in = <nowiki>Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}</nowiki> | |
||
out= <nowiki>{551, 802}</nowiki>}} |
out= <nowiki>{551, 802}</nowiki>}} |
Latest revision as of 17:21, 21 February 2013
(For In[1] see Setup)
|
|
|
8_18 |
The Alexander polynomial and the Conway polynomial of a knot always satisfy . Let us verify this relation for the knot 8_18:
In[5]:=
|
alex = Alexander[Knot[8, 18]][t]
|
Out[5]=
|
-3 5 10 2 3
13 - t + -- - -- - 10 t + 5 t - t
2 t
t
|
In[6]:=
|
Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]
|
Out[6]=
|
-3 5 10 2 3
13 - t + -- - -- - 10 t + 5 t - t
2 t
t
|
The determinant of a knot is . Hence for 8_18 it is
In[7]:=
|
Abs[alex /. t -> -1]
|
Out[7]=
|
45
|
Alternatively (see The Determinant and the Signature):
In[8]:=
|
KnotDet[Knot[8, 18]]
|
Out[8]=
|
45
|
, the (standardly normalized) type 2 Vassiliev invariant of a knot is the coefficient of in its Conway polynomial:
In[9]:=
|
Coefficient[Conway[Knot[8, 18]][z], z^2]
|
Out[9]=
|
1
|
Alternatively (see Finite Type (Vassiliev) Invariants),
In[10]:=
|
Vassiliev[2][Knot[8, 18]]
|
Out[10]=
|
1
|
K11a99 |
K11a277 |
Sometimes two knots have the same Alexander polynomial but different Alexander ideals. An example is the pair K11a99 and K11a277. They have the same Alexander polynomial, but the second Alexander ideal of the first knot is the whole ring while the second Alexander ideal of the second knot is the smaller ideal generated by and by :
In[11]:=
|
{K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};
|
In[12]:=
|
Alexander[K1] == Alexander[K2]
|
Out[12]=
|
True
|
In[13]:=
|
Alexander[K1, 2][t]
|
Out[13]=
|
{1}
|
In[14]:=
|
Alexander[K2, 2][t]
|
Out[14]=
|
{3, 1 + t}
|
Finally, the Alexander polynomial attains 551 values on the 802 knots known to KnotTheory`
:
In[15]:=
|
Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}
|
Out[15]=
|
{551, 802}
|