The Alexander-Conway Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
m (Reverted edit of 218.74.122.100, changed back to last version by Drorbn)
No edit summary
 
(8 intermediate revisions by 6 users not shown)
Line 6: Line 6:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
{{HelpAndAbout|
n = 1 |
n = 2 |
n1 = 2 |
n1 = 3 |
in = <nowiki>Alexander</nowiki> |
in = <nowiki>Alexander</nowiki> |
out= <nowiki>Alexander[K][t] computes the Alexander polynomial of a knot K as a function of the variable t. Alexander[K, r][t] computes a basis of the r'th Alexander ideal of K in Z[t].</nowiki> |
out= <nowiki>Alexander[K][t] computes the Alexander polynomial of a knot K as a function of the variable t. Alexander[K, r][t] computes a basis of the r'th Alexander ideal of K in Z[t].</nowiki> |
Line 16: Line 16:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
{{HelpLine|
n = 3 |
n = 4 |
in = <nowiki>Conway</nowiki> |
in = <nowiki>Conway</nowiki> |
out= <nowiki>Conway[K][z] computes the Conway polynomial of a knot K as a function of the variable z.</nowiki>}}
out= <nowiki>Conway[K][z] computes the Conway polynomial of a knot K as a function of the variable z.</nowiki>}}
Line 28: Line 28:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 4 |
n = 5 |
in = <nowiki>alex = Alexander[Knot[8, 18]][t]</nowiki> |
in = <nowiki>alex = Alexander[Knot[8, 18]][t]</nowiki> |
out= <nowiki> -3 5 10 2 3
out= <nowiki> -3 5 10 2 3
Line 39: Line 39:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 5 |
n = 6 |
in = <nowiki>Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]</nowiki> |
in = <nowiki>Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]</nowiki> |
out= <nowiki> -3 5 10 2 3
out= <nowiki> -3 5 10 2 3
Line 52: Line 52:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 6 |
n = 7 |
in = <nowiki>Abs[alex /. t -> -1]</nowiki> |
in = <nowiki>Abs[alex /. t -> -1]</nowiki> |
out= <nowiki>45</nowiki>}}
out= <nowiki>45</nowiki>}}
Line 62: Line 62:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 7 |
n = 8 |
in = <nowiki>KnotDet[Knot[8, 18]]</nowiki> |
in = <nowiki>KnotDet[Knot[8, 18]]</nowiki> |
out= <nowiki>45</nowiki>}}
out= <nowiki>45</nowiki>}}
Line 72: Line 72:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 8 |
n = 9 |
in = <nowiki>Coefficient[Conway[Knot[8, 18]][z], z^2]</nowiki> |
in = <nowiki>Coefficient[Conway[Knot[8, 18]][z], z^2]</nowiki> |
out= <nowiki>1</nowiki>}}
out= <nowiki>1</nowiki>}}
Line 82: Line 82:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 9 |
n = 10 |
in = <nowiki>Vassiliev[2][Knot[8, 18]]</nowiki> |
in = <nowiki>Vassiliev[2][Knot[8, 18]]</nowiki> |
out= <nowiki>1</nowiki>}}
out= <nowiki>1</nowiki>}}
Line 94: Line 94:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{In|
{{In|
n = 10 |
n = 11 |
in = <nowiki>{K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};</nowiki>}}
in = <nowiki>{K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};</nowiki>}}
<!--END-->
<!--END-->
Line 101: Line 101:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 11 |
n = 12 |
in = <nowiki>Alexander[K1] == Alexander[K2]</nowiki> |
in = <nowiki>Alexander[K1] == Alexander[K2]</nowiki> |
out= <nowiki>True</nowiki>}}
out= <nowiki>True</nowiki>}}
Line 109: Line 109:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 12 |
n = 13 |
in = <nowiki>Alexander[K1, 2][t]</nowiki> |
in = <nowiki>Alexander[K1, 2][t]</nowiki> |
out= <nowiki>{1}</nowiki>}}
out= <nowiki>{1}</nowiki>}}
Line 117: Line 117:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 13 |
n = 14 |
in = <nowiki>Alexander[K2, 2][t]</nowiki> |
in = <nowiki>Alexander[K2, 2][t]</nowiki> |
out= <nowiki>{3, 1 + t}</nowiki>}}
out= <nowiki>{3, 1 + t}</nowiki>}}
Line 127: Line 127:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 14 |
n = 15 |
in = <nowiki>Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}</nowiki> |
in = <nowiki>Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}</nowiki> |
out= <nowiki>{551, 802}</nowiki>}}
out= <nowiki>{551, 802}</nowiki>}}

Latest revision as of 17:21, 21 February 2013


(For In[1] see Setup)

In[2]:= ?Alexander
Alexander[K][t] computes the Alexander polynomial of a knot K as a function of the variable t. Alexander[K, r][t] computes a basis of the r'th Alexander ideal of K in Z[t].
In[3]:= Alexander::about
The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
In[4]:= ?Conway
Conway[K][z] computes the Conway polynomial of a knot K as a function of the variable z.
8 18.gif
8_18

The Alexander polynomial and the Conway polynomial of a knot always satisfy . Let us verify this relation for the knot 8_18:

In[5]:= alex = Alexander[Knot[8, 18]][t]
Out[5]= -3 5 10 2 3 13 - t + -- - -- - 10 t + 5 t - t 2 t t
In[6]:= Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]
Out[6]= -3 5 10 2 3 13 - t + -- - -- - 10 t + 5 t - t 2 t t

The determinant of a knot is . Hence for 8_18 it is

In[7]:= Abs[alex /. t -> -1]
Out[7]= 45

Alternatively (see The Determinant and the Signature):

In[8]:= KnotDet[Knot[8, 18]]
Out[8]= 45

, the (standardly normalized) type 2 Vassiliev invariant of a knot is the coefficient of in its Conway polynomial:

In[9]:= Coefficient[Conway[Knot[8, 18]][z], z^2]
Out[9]= 1

Alternatively (see Finite Type (Vassiliev) Invariants),

In[10]:= Vassiliev[2][Knot[8, 18]]
Out[10]= 1
K11a99.gif
K11a99
K11a277.gif
K11a277

Sometimes two knots have the same Alexander polynomial but different Alexander ideals. An example is the pair K11a99 and K11a277. They have the same Alexander polynomial, but the second Alexander ideal of the first knot is the whole ring while the second Alexander ideal of the second knot is the smaller ideal generated by and by :

In[11]:= {K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};
In[12]:= Alexander[K1] == Alexander[K2]
Out[12]= True
In[13]:= Alexander[K1, 2][t]
Out[13]= {1}
In[14]:= Alexander[K2, 2][t]
Out[14]= {3, 1 + t}

Finally, the Alexander polynomial attains 551 values on the 802 knots known to KnotTheory`:

In[15]:= Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}
Out[15]= {551, 802}