10 116: Difference between revisions
| No edit summary | DrorsRobot (talk | contribs)  No edit summary | ||
| Line 16: | Line 16: | ||
| {{Knot Presentations}} | {{Knot Presentations}} | ||
| <center><table border=1 cellpadding=10><tr align=center valign=top> | |||
| <td> | |||
| [[Braid Representatives|Minimum Braid Representative]]: | |||
| <table cellspacing=0 cellpadding=0 border=0> | |||
| <tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> | |||
| </table> | |||
| [[Invariants from Braid Theory|Length]] is 10, width is 3. | |||
| [[Invariants from Braid Theory|Braid index]] is 3. | |||
| </td> | |||
| <td> | |||
| [[Lightly Documented Features|A Morse Link Presentation]]: | |||
| [[Image:{{PAGENAME}}_ML.gif]] | |||
| </td> | |||
| </tr></table></center> | |||
| {{3D Invariants}} | {{3D Invariants}} | ||
| {{4D Invariants}} | {{4D Invariants}} | ||
| {{Polynomial Invariants}} | {{Polynomial Invariants}} | ||
| === "Similar" Knots (within the Atlas) === | |||
| Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: | |||
| {[[K11a7]], [[K11a33]], [[K11a82]], ...} | |||
| Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):  | |||
| {...} | |||
| {{Vassiliev Invariants}} | {{Vassiliev Invariants}} | ||
| Line 42: | Line 72: | ||
| <tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | <tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | ||
| </table>}} | </table>}} | ||
| {{Display Coloured Jones|J2=<math>q^{10}-4 q^9+2 q^8+15 q^7-25 q^6-10 q^5+63 q^4-47 q^3-58 q^2+129 q-42-129 q^{-1} +176 q^{-2} -12 q^{-3} -186 q^{-4} +182 q^{-5} +27 q^{-6} -199 q^{-7} +143 q^{-8} +52 q^{-9} -155 q^{-10} +80 q^{-11} +46 q^{-12} -81 q^{-13} +30 q^{-14} +20 q^{-15} -26 q^{-16} +8 q^{-17} +4 q^{-18} -4 q^{-19} + q^{-20} </math>|J3=<math>q^{21}-4 q^{20}+2 q^{19}+9 q^{18}+q^{17}-28 q^{16}-16 q^{15}+63 q^{14}+55 q^{13}-92 q^{12}-143 q^{11}+100 q^{10}+274 q^9-59 q^8-421 q^7-63 q^6+562 q^5+248 q^4-647 q^3-492 q^2+681 q+732-620 q^{-1} -984 q^{-2} +532 q^{-3} +1172 q^{-4} -376 q^{-5} -1341 q^{-6} +223 q^{-7} +1436 q^{-8} -41 q^{-9} -1485 q^{-10} -134 q^{-11} +1457 q^{-12} +305 q^{-13} -1360 q^{-14} -439 q^{-15} +1178 q^{-16} +532 q^{-17} -945 q^{-18} -553 q^{-19} +687 q^{-20} +504 q^{-21} -446 q^{-22} -403 q^{-23} +258 q^{-24} +280 q^{-25} -135 q^{-26} -168 q^{-27} +68 q^{-28} +86 q^{-29} -34 q^{-30} -43 q^{-31} +24 q^{-32} +15 q^{-33} -11 q^{-34} -6 q^{-35} +4 q^{-36} +4 q^{-37} -4 q^{-38} + q^{-39} </math>|J4=<math>q^{36}-4 q^{35}+2 q^{34}+9 q^{33}-5 q^{32}-2 q^{31}-34 q^{30}+8 q^{29}+74 q^{28}+24 q^{27}+4 q^{26}-216 q^{25}-122 q^{24}+215 q^{23}+300 q^{22}+343 q^{21}-528 q^{20}-786 q^{19}-131 q^{18}+662 q^{17}+1639 q^{16}-66 q^{15}-1661 q^{14}-1744 q^{13}-203 q^{12}+3313 q^{11}+2083 q^{10}-1021 q^9-3791 q^8-3267 q^7+3334 q^6+4829 q^5+2117 q^4-4099 q^3-7212 q^2+751 q+5964+6391 q^{-1} -1879 q^{-2} -9881 q^{-3} -3125 q^{-4} +4841 q^{-5} +9831 q^{-6} +1610 q^{-7} -10619 q^{-8} -6624 q^{-9} +2511 q^{-10} +11806 q^{-11} +4979 q^{-12} -10029 q^{-13} -9201 q^{-14} -107 q^{-15} +12510 q^{-16} +7828 q^{-17} -8382 q^{-18} -10782 q^{-19} -2928 q^{-20} +11658 q^{-21} +9912 q^{-22} -5380 q^{-23} -10643 q^{-24} -5643 q^{-25} +8647 q^{-26} +10226 q^{-27} -1497 q^{-28} -8040 q^{-29} -6883 q^{-30} +4236 q^{-31} +7928 q^{-32} +1345 q^{-33} -3948 q^{-34} -5594 q^{-35} +740 q^{-36} +4182 q^{-37} +1805 q^{-38} -811 q^{-39} -2941 q^{-40} -448 q^{-41} +1360 q^{-42} +862 q^{-43} +249 q^{-44} -983 q^{-45} -269 q^{-46} +269 q^{-47} +145 q^{-48} +198 q^{-49} -232 q^{-50} -28 q^{-51} +55 q^{-52} -27 q^{-53} +55 q^{-54} -52 q^{-55} +11 q^{-56} +19 q^{-57} -16 q^{-58} +9 q^{-59} -10 q^{-60} +4 q^{-61} +4 q^{-62} -4 q^{-63} + q^{-64} </math>|J5=<math>q^{55}-4 q^{54}+2 q^{53}+9 q^{52}-5 q^{51}-8 q^{50}-8 q^{49}-10 q^{48}+19 q^{47}+67 q^{46}+29 q^{45}-68 q^{44}-138 q^{43}-147 q^{42}+30 q^{41}+334 q^{40}+487 q^{39}+160 q^{38}-505 q^{37}-1050 q^{36}-893 q^{35}+285 q^{34}+1831 q^{33}+2342 q^{32}+798 q^{31}-2127 q^{30}-4334 q^{29}-3460 q^{28}+999 q^{27}+6200 q^{26}+7571 q^{25}+2554 q^{24}-6270 q^{23}-12227 q^{22}-9117 q^{21}+2976 q^{20}+15598 q^{19}+17665 q^{18}+4795 q^{17}-15096 q^{16}-26243 q^{15}-16852 q^{14}+9094 q^{13}+31894 q^{12}+31088 q^{11}+3192 q^{10}-32018 q^9-44778 q^8-20301 q^7+25193 q^6+54628 q^5+39932 q^4-11723 q^3-58780 q^2-58666 q-6675+56169 q^{-1} +74484 q^{-2} +27311 q^{-3} -48142 q^{-4} -85286 q^{-5} -47681 q^{-6} +35814 q^{-7} +91612 q^{-8} +65983 q^{-9} -22045 q^{-10} -93607 q^{-11} -81195 q^{-12} +7789 q^{-13} +93116 q^{-14} +93558 q^{-15} +5243 q^{-16} -90914 q^{-17} -103446 q^{-18} -17383 q^{-19} +87985 q^{-20} +111762 q^{-21} +28669 q^{-22} -84100 q^{-23} -118820 q^{-24} -40095 q^{-25} +78788 q^{-26} +124391 q^{-27} +52038 q^{-28} -70720 q^{-29} -127652 q^{-30} -64564 q^{-31} +59151 q^{-32} +127042 q^{-33} +76515 q^{-34} -43529 q^{-35} -121029 q^{-36} -86308 q^{-37} +24914 q^{-38} +108768 q^{-39} +91499 q^{-40} -5289 q^{-41} -90533 q^{-42} -90423 q^{-43} -12476 q^{-44} +68371 q^{-45} +82476 q^{-46} +25518 q^{-47} -45362 q^{-48} -68728 q^{-49} -32134 q^{-50} +24779 q^{-51} +51857 q^{-52} +32318 q^{-53} -9270 q^{-54} -34970 q^{-55} -27565 q^{-56} -299 q^{-57} +20677 q^{-58} +20444 q^{-59} +4587 q^{-60} -10469 q^{-61} -13275 q^{-62} -5182 q^{-63} +4292 q^{-64} +7475 q^{-65} +4075 q^{-66} -1180 q^{-67} -3738 q^{-68} -2539 q^{-69} +83 q^{-70} +1550 q^{-71} +1304 q^{-72} +239 q^{-73} -570 q^{-74} -599 q^{-75} -149 q^{-76} +175 q^{-77} +197 q^{-78} +75 q^{-79} -24 q^{-80} -63 q^{-81} -42 q^{-82} +24 q^{-83} +13 q^{-84} -14 q^{-85} +12 q^{-86} +6 q^{-87} -12 q^{-88} +4 q^{-89} +5 q^{-90} -10 q^{-91} +4 q^{-92} +4 q^{-93} -4 q^{-94} + q^{-95} </math>|J6=<math>q^{78}-4 q^{77}+2 q^{76}+9 q^{75}-5 q^{74}-8 q^{73}-14 q^{72}+16 q^{71}+q^{70}+12 q^{69}+72 q^{68}-19 q^{67}-81 q^{66}-162 q^{65}-34 q^{64}+28 q^{63}+188 q^{62}+540 q^{61}+297 q^{60}-144 q^{59}-927 q^{58}-1006 q^{57}-987 q^{56}+9 q^{55}+2170 q^{54}+3033 q^{53}+2596 q^{52}-522 q^{51}-3424 q^{50}-6886 q^{49}-6627 q^{48}-460 q^{47}+7162 q^{46}+13764 q^{45}+12290 q^{44}+5075 q^{43}-11611 q^{42}-25362 q^{41}-25415 q^{40}-10630 q^{39}+16692 q^{38}+38980 q^{37}+48612 q^{36}+23245 q^{35}-21686 q^{34}-63064 q^{33}-76490 q^{32}-44054 q^{31}+20145 q^{30}+96454 q^{29}+118620 q^{28}+75089 q^{27}-24126 q^{26}-128643 q^{25}-173776 q^{24}-123546 q^{23}+28148 q^{22}+174222 q^{21}+243138 q^{20}+169572 q^{19}-20203 q^{18}-230694 q^{17}-333551 q^{16}-221638 q^{15}+26480 q^{14}+301992 q^{13}+418383 q^{12}+289815 q^{11}-47292 q^{10}-399680 q^9-513072 q^8-333339 q^7+93427 q^6+496027 q^5+627460 q^4+349841 q^3-184699 q^2-617876 q-707778-322429 q^{-1} +294204 q^{-2} +774867 q^{-3} +751954 q^{-4} +223348 q^{-5} -458883 q^{-6} -899048 q^{-7} -736858 q^{-8} -79473 q^{-9} +683430 q^{-10} +986413 q^{-11} +625443 q^{-12} -152922 q^{-13} -882116 q^{-14} -1003598 q^{-15} -443143 q^{-16} +469179 q^{-17} +1045038 q^{-18} +901461 q^{-19} +141376 q^{-20} -764887 q^{-21} -1125649 q^{-22} -702379 q^{-23} +263526 q^{-24} +1022958 q^{-25} +1063599 q^{-26} +356307 q^{-27} -650722 q^{-28} -1185242 q^{-29} -879991 q^{-30} +106366 q^{-31} +996800 q^{-32} +1185314 q^{-33} +529585 q^{-34} -551677 q^{-35} -1236161 q^{-36} -1046663 q^{-37} -58709 q^{-38} +951368 q^{-39} +1301981 q^{-40} +734163 q^{-41} -390898 q^{-42} -1236819 q^{-43} -1221615 q^{-44} -307772 q^{-45} +789264 q^{-46} +1345149 q^{-47} +971098 q^{-48} -92361 q^{-49} -1070398 q^{-50} -1307243 q^{-51} -617229 q^{-52} +440482 q^{-53} +1180554 q^{-54} +1109630 q^{-55} +287898 q^{-56} -680215 q^{-57} -1155290 q^{-58} -819959 q^{-59} -50 q^{-60} +772158 q^{-61} +992144 q^{-62} +548003 q^{-63} -202630 q^{-64} -756425 q^{-65} -756111 q^{-66} -303221 q^{-67} +294233 q^{-68} +638692 q^{-69} +536866 q^{-70} +119496 q^{-71} -313121 q^{-72} -475002 q^{-73} -338667 q^{-74} -14632 q^{-75} +264909 q^{-76} +331258 q^{-77} +187090 q^{-78} -41565 q^{-79} -189786 q^{-80} -205301 q^{-81} -93140 q^{-82} +50738 q^{-83} +129144 q^{-84} +112817 q^{-85} +34107 q^{-86} -38504 q^{-87} -76085 q^{-88} -57726 q^{-89} -9448 q^{-90} +29186 q^{-91} +39215 q^{-92} +23198 q^{-93} +2124 q^{-94} -16995 q^{-95} -19362 q^{-96} -8747 q^{-97} +2593 q^{-98} +8263 q^{-99} +6820 q^{-100} +3737 q^{-101} -2050 q^{-102} -4185 q^{-103} -2474 q^{-104} -352 q^{-105} +1034 q^{-106} +1022 q^{-107} +1223 q^{-108} -62 q^{-109} -684 q^{-110} -360 q^{-111} -102 q^{-112} +73 q^{-113} + q^{-114} +271 q^{-115} +14 q^{-116} -111 q^{-117} -13 q^{-118} -2 q^{-119} +13 q^{-120} -46 q^{-121} +50 q^{-122} +7 q^{-123} -25 q^{-124} +8 q^{-125} +5 q^{-127} -10 q^{-128} +4 q^{-129} +4 q^{-130} -4 q^{-131} + q^{-132} </math>|J7=<math>q^{105}-4 q^{104}+2 q^{103}+9 q^{102}-5 q^{101}-8 q^{100}-14 q^{99}+10 q^{98}+27 q^{97}-6 q^{96}+17 q^{95}+24 q^{94}-32 q^{93}-81 q^{92}-140 q^{91}-35 q^{90}+180 q^{89}+203 q^{88}+317 q^{87}+277 q^{86}-69 q^{85}-501 q^{84}-1187 q^{83}-1177 q^{82}-299 q^{81}+772 q^{80}+2326 q^{79}+3310 q^{78}+2759 q^{77}+771 q^{76}-3595 q^{75}-7603 q^{74}-8625 q^{73}-6386 q^{72}+1164 q^{71}+10906 q^{70}+18808 q^{69}+21313 q^{68}+11831 q^{67}-7272 q^{66}-28685 q^{65}-44958 q^{64}-42440 q^{63}-18261 q^{62}+22324 q^{61}+68514 q^{60}+92746 q^{59}+78711 q^{58}+22968 q^{57}-64103 q^{56}-142103 q^{55}-173979 q^{54}-132631 q^{53}-10319 q^{52}+146476 q^{51}+273463 q^{50}+304034 q^{49}+189710 q^{48}-38424 q^{47}-302773 q^{46}-488677 q^{45}-475811 q^{44}-237719 q^{43}+165868 q^{42}+581175 q^{41}+796327 q^{40}+682179 q^{39}+222203 q^{38}-440031 q^{37}-1007750 q^{36}-1207684 q^{35}-869708 q^{34}-49172 q^{33}+922337 q^{32}+1625024 q^{31}+1670699 q^{30}+916490 q^{29}-379123 q^{28}-1699282 q^{27}-2405172 q^{26}-2047942 q^{25}-674546 q^{24}+1219794 q^{23}+2785688 q^{22}+3199093 q^{21}+2139708 q^{20}-94472 q^{19}-2556796 q^{18}-4048701 q^{17}-3761567 q^{16}-1601328 q^{15}+1577925 q^{14}+4295576 q^{13}+5201831 q^{12}+3630757 q^{11}+115205 q^{10}-3754692 q^9-6129725 q^8-5656063 q^7-2320647 q^6+2410339 q^5+6319177 q^4+7335380 q^3+4724899 q^2-414462 q-5700197-8413324 q^{-1} -6996260 q^{-2} -1962291 q^{-3} +4368608 q^{-4} +8770447 q^{-5} +8859134 q^{-6} +4415087 q^{-7} -2531357 q^{-8} -8438363 q^{-9} -10161317 q^{-10} -6671885 q^{-11} +457160 q^{-12} +7560095 q^{-13} +10866184 q^{-14} +8550235 q^{-15} +1610856 q^{-16} -6340984 q^{-17} -11055527 q^{-18} -9971490 q^{-19} -3476329 q^{-20} +4993754 q^{-21} +10863732 q^{-22} +10947851 q^{-23} +5035675 q^{-24} -3692443 q^{-25} -10458859 q^{-26} -11562618 q^{-27} -6254716 q^{-28} +2558510 q^{-29} +9987193 q^{-30} +11928935 q^{-31} +7172709 q^{-32} -1642486 q^{-33} -9565849 q^{-34} -12173638 q^{-35} -7870129 q^{-36} +937575 q^{-37} +9258553 q^{-38} +12405864 q^{-39} +8457565 q^{-40} -379459 q^{-41} -9074976 q^{-42} -12704262 q^{-43} -9050877 q^{-44} -138945 q^{-45} +8964002 q^{-46} +13098623 q^{-47} +9750846 q^{-48} +748305 q^{-49} -8817560 q^{-50} -13551342 q^{-51} -10613901 q^{-52} -1581260 q^{-53} +8482179 q^{-54} +13955752 q^{-55} +11626559 q^{-56} +2728723 q^{-57} -7793083 q^{-58} -14137150 q^{-59} -12681350 q^{-60} -4204675 q^{-61} +6614112 q^{-62} +13889997 q^{-63} +13587239 q^{-64} +5911388 q^{-65} -4900343 q^{-66} -13033080 q^{-67} -14093722 q^{-68} -7635703 q^{-69} +2731817 q^{-70} +11473738 q^{-71} +13965385 q^{-72} +9089906 q^{-73} -331461 q^{-74} -9267914 q^{-75} -13056008 q^{-76} -9977978 q^{-77} -1977404 q^{-78} +6628537 q^{-79} +11374372 q^{-80} +10093465 q^{-81} +3853496 q^{-82} -3892291 q^{-83} -9107156 q^{-84} -9388717 q^{-85} -5030815 q^{-86} +1430079 q^{-87} +6572543 q^{-88} +7997555 q^{-89} +5404833 q^{-90} +459641 q^{-91} -4138335 q^{-92} -6200227 q^{-93} -5051850 q^{-94} -1624008 q^{-95} +2112926 q^{-96} +4328336 q^{-97} +4192792 q^{-98} +2089008 q^{-99} -667941 q^{-100} -2673341 q^{-101} -3113040 q^{-102} -2017173 q^{-103} -178950 q^{-104} +1411284 q^{-105} +2065397 q^{-106} +1634346 q^{-107} +539213 q^{-108} -583518 q^{-109} -1217100 q^{-110} -1153869 q^{-111} -580276 q^{-112} +130472 q^{-113} +627756 q^{-114} +718788 q^{-115} +464786 q^{-116} +62828 q^{-117} -273890 q^{-118} -397793 q^{-119} -312094 q^{-120} -108131 q^{-121} +94482 q^{-122} +195147 q^{-123} +181237 q^{-124} +90431 q^{-125} -18052 q^{-126} -84181 q^{-127} -94081 q^{-128} -58733 q^{-129} -4964 q^{-130} +32043 q^{-131} +43440 q^{-132} +31897 q^{-133} +8031 q^{-134} -9964 q^{-135} -18275 q^{-136} -15802 q^{-137} -5541 q^{-138} +2703 q^{-139} +7231 q^{-140} +6857 q^{-141} +2599 q^{-142} -342 q^{-143} -2372 q^{-144} -2880 q^{-145} -1317 q^{-146} -110 q^{-147} +1004 q^{-148} +1178 q^{-149} +264 q^{-150} +57 q^{-151} -160 q^{-152} -377 q^{-153} -178 q^{-154} -128 q^{-155} +142 q^{-156} +217 q^{-157} -46 q^{-158} -9 q^{-159} +10 q^{-160} -24 q^{-161} -3 q^{-162} -46 q^{-163} +18 q^{-164} +45 q^{-165} -24 q^{-166} -5 q^{-167} +4 q^{-168} +5 q^{-170} -10 q^{-171} +4 q^{-172} +4 q^{-173} -4 q^{-174} + q^{-175} </math>}} | |||
| {{Computer Talk Header}} | {{Computer Talk Header}} | ||
| Line 49: | Line 82: | ||
| <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | ||
| </tr> | </tr> | ||
| <tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August  | <tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 116]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 116]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[16, 3, 17, 4], X[14, 7, 15, 8], X[8, 15, 9, 16],  | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[16, 3, 17, 4], X[14, 7, 15, 8], X[8, 15, 9, 16],  | |||
|   X[10, 18, 11, 17], X[18, 6, 19, 5], X[20, 13, 1, 14],  |   X[10, 18, 11, 17], X[18, 6, 19, 5], X[20, 13, 1, 14],  | ||
|   X[12, 19, 13, 20], X[2, 10, 3, 9], X[4, 11, 5, 12]]</nowiki></pre></td></tr> |   X[12, 19, 13, 20], X[2, 10, 3, 9], X[4, 11, 5, 12]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 116]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 116]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -9, 2, -10, 6, -1, 3, -4, 9, -5, 10, -8, 7, -3, 4, -2, 5,  | |||
|   -6, 8, -7]</nowiki></pre></td></tr> |   -6, 8, -7]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 116]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 116]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 16, 18, 14, 2, 4, 20, 8, 10, 12]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 116]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, 2, -1, -1, 2, -1, 2, -1, 2}]</nowiki></pre></td></tr> | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, 2, -1, -1, 2, -1, 2, -1, 2}]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 116]][t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 116]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 116]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_116_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 116]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 4, 3, NotAvailable, 1}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 116]][t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       -4   5    12   19              2      3    4 | |||
| -21 - t   + -- - -- + -- + 19 t - 12 t  + 5 t  - t | -21 - t   + -- - -- + -- + 19 t - 12 t  + 5 t  - t | ||
|              3    2   t |              3    2   t | ||
|             t    t</nowiki></pre></td></tr> |             t    t</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 116]][z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 116]][z]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       4      6    8 | |||
| 1 - 2 z  - 3 z  - z</nowiki></pre></td></tr> | 1 - 2 z  - 3 z  - z</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 116], Knot[11, Alternating, 7], Knot[11, Alternating, 33],  | |||
|   Knot[11, Alternating, 82]}</nowiki></pre></td></tr> |   Knot[11, Alternating, 82]}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 116]], KnotSignature[Knot[10, 116]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 116]], KnotSignature[Knot[10, 116]]}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{95, -2}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       -7   4    8    12   15   16   15            2    3 | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 116]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       -7   4    8    12   15   16   15            2    3 | |||
| -11 + q   - -- + -- - -- + -- - -- + -- + 8 q - 4 q  + q | -11 + q   - -- + -- - -- + -- - -- + -- + 8 q - 4 q  + q | ||
|              6    5    4    3    2   q |              6    5    4    3    2   q | ||
|             q    q    q    q    q</nowiki></pre></td></tr> |             q    q    q    q    q</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 116]}</nowiki></pre></td></tr> | |||
| <math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 116]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 116]][q]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -20    2     2     2     2    3    4    3    3     2      4 | |||
| 1 + q    - --- + --- - --- + --- - -- + -- - -- + -- - q  + 2 q  -  | 1 + q    - --- + --- - --- + --- - -- + -- - -- + -- - q  + 2 q  -  | ||
|             18    16    14    10    8    6    4    2 |             18    16    14    10    8    6    4    2 | ||
| Line 94: | Line 148: | ||
|      6    8 |      6    8 | ||
|   2 q  + q</nowiki></pre></td></tr> |   2 q  + q</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 116]][a, z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 116]][a, z]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2      2  2      4  2      4      2  4      4  4    6 | |||
| 1 + 2 z  - 4 a  z  + 2 a  z  + 3 z  - 8 a  z  + 3 a  z  + z  -  | |||
|      2  6    4  6    2  8 | |||
|   5 a  z  + a  z  - a  z</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 116]][a, z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                      2 | |||
|     z              3      5      2   z       2  2    4  2      6  2 |     z              3      5      2   z       2  2    4  2      6  2 | ||
| 1 - - - 3 a z - 3 a  z - a  z - z  + -- - 3 a  z  + a  z  + 2 a  z  +  | 1 - - - 3 a z - 3 a  z - a  z - z  + -- - 3 a  z  + a  z  + 2 a  z  +  | ||
| Line 125: | Line 187: | ||
|        9      3  9 |        9      3  9 | ||
|   3 a z  + 3 a  z</nowiki></pre></td></tr> |   3 a z  + 3 a  z</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 116]], Vassiliev[3][Knot[10, 116]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 116]], Vassiliev[3][Knot[10, 116]]}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>7    9     1        3        1        5        3       7       5 | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 116]][q, t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>7    9     1        3        1        5        3       7       5 | |||
| -- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +  | -- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +  | ||
|  3   q    15  6    13  5    11  5    11  4    9  4    9  3    7  3 |  3   q    15  6    13  5    11  5    11  4    9  4    9  3    7  3 | ||
| Line 140: | Line 204: | ||
|    3  3      5  3    7  4 |    3  3      5  3    7  4 | ||
|   q  t  + 3 q  t  + q  t</nowiki></pre></td></tr> |   q  t  + 3 q  t  + q  t</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 116], 2][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       -20    4     4     8    26    20    30    81    46    80 | |||
| -42 + q    - --- + --- + --- - --- + --- + --- - --- + --- + --- -  | |||
|               19    18    17    16    15    14    13    12    11 | |||
|              q     q     q     q     q     q     q     q     q | |||
|   155   52   143   199   27   182   186   12   176   129 | |||
|   --- + -- + --- - --- + -- + --- - --- - -- + --- - --- + 129 q -  | |||
|    10    9    8     7     6    5     4     3    2     q | |||
|   q     q    q     q     q    q     q     q    q | |||
|       2       3       4       5       6       7      8      9    10 | |||
|   58 q  - 47 q  + 63 q  - 10 q  - 25 q  + 15 q  + 2 q  - 4 q  + q</nowiki></pre></td></tr> | |||
| </table> | </table> | ||
| See/edit the [[Rolfsen_Splice_Template]]. | |||
|  [[Category:Knot Page]] |  [[Category:Knot Page]] | ||
Revision as of 18:23, 29 August 2005
|  |  | 
|   | Visit 10 116's page at the  Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10 116's page at Knotilus! Visit 10 116's page at the original Knot Atlas! | 
Knot presentations
| Planar diagram presentation | X6271 X16,3,17,4 X14,7,15,8 X8,15,9,16 X10,18,11,17 X18,6,19,5 X20,13,1,14 X12,19,13,20 X2,10,3,9 X4,11,5,12 | 
| Gauss code | 1, -9, 2, -10, 6, -1, 3, -4, 9, -5, 10, -8, 7, -3, 4, -2, 5, -6, 8, -7 | 
| Dowker-Thistlethwaite code | 6 16 18 14 2 4 20 8 10 12 | 
| Conway Notation | [8*2:2] | 
| 
 Length is 10, width is 3. Braid index is 3. | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 5 | |
| 6 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | |
| 1,0,1 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["10 116"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 95, -2 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a7, K11a33, K11a82, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
| V2 and V3: | (0, 0) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 116. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
 | 
| Integral Khovanov Homology (db, data source) |  | 
The Coloured Jones Polynomials
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | |
| 7 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.













