| In[1]:=     | << KnotTheory` | 
| Loading KnotTheory` (version of August 29, 2005, 15:27:48)... | 
| In[2]:= | PD[Knot[10, 116]] | 
| Out[2]=   | PD[X[6, 2, 7, 1], X[16, 3, 17, 4], X[14, 7, 15, 8], X[8, 15, 9, 16], 
 X[10, 18, 11, 17], X[18, 6, 19, 5], X[20, 13, 1, 14], 
X[12, 19, 13, 20], X[2, 10, 3, 9], X[4, 11, 5, 12]] | 
| In[3]:= | GaussCode[Knot[10, 116]] | 
| Out[3]=   | GaussCode[1, -9, 2, -10, 6, -1, 3, -4, 9, -5, 10, -8, 7, -3, 4, -2, 5, 
  -6, 8, -7] | 
| In[4]:= | DTCode[Knot[10, 116]] | 
| Out[4]=   | DTCode[6, 16, 18, 14, 2, 4, 20, 8, 10, 12] | 
| In[5]:= | br = BR[Knot[10, 116]] | 
| Out[5]=   | BR[3, {-1, -1, 2, -1, -1, 2, -1, 2, -1, 2}] | 
| In[6]:= | {First[br], Crossings[br]} | 
| Out[6]=   | {3, 10} | 
| In[7]:= | BraidIndex[Knot[10, 116]] | 
| Out[7]=   | 3 | 
| In[8]:= | Show[DrawMorseLink[Knot[10, 116]]] | 
|  |  | 
| Out[8]= | -Graphics- | 
| In[9]:= | (#[Knot[10, 116]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} | 
| Out[9]=   | {Reversible, 2, 4, 3, NotAvailable, 1} | 
| In[10]:= | alex = Alexander[Knot[10, 116]][t] | 
| Out[10]=   |        -4   5    12   19              2      3    4
-21 - t   + -- - -- + -- + 19 t - 12 t  + 5 t  - t
             3    2   t
t    t | 
| In[11]:= | Conway[Knot[10, 116]][z] | 
| Out[11]=   |        4      6    8
1 - 2 z  - 3 z  - z | 
| In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] | 
| Out[12]=   | {Knot[10, 116], Knot[11, Alternating, 7], Knot[11, Alternating, 33], 
  Knot[11, Alternating, 82]} | 
| In[13]:= | {KnotDet[Knot[10, 116]], KnotSignature[Knot[10, 116]]} | 
| Out[13]=   | {95, -2} | 
| In[14]:= | Jones[Knot[10, 116]][q] | 
| Out[14]=   |        -7   4    8    12   15   16   15            2    3
-11 + q   - -- + -- - -- + -- - -- + -- + 8 q - 4 q  + q
             6    5    4    3    2   q
q    q    q    q    q | 
| In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] | 
| Out[15]=   | {Knot[10, 116]} | 
| In[16]:= | A2Invariant[Knot[10, 116]][q] | 
| Out[16]=   |      -20    2     2     2     2    3    4    3    3     2      4
1 + q    - --- + --- - --- + --- - -- + -- - -- + -- - q  + 2 q  - 
            18    16    14    10    8    6    4    2
          q     q     q     q     q    q    q    q
    6    8
2 q  + q | 
| In[17]:= | HOMFLYPT[Knot[10, 116]][a, z] | 
| Out[17]=   |        2      2  2      4  2      4      2  4      4  4    6
1 + 2 z  - 4 a  z  + 2 a  z  + 3 z  - 8 a  z  + 3 a  z  + z  - 
     2  6    4  6    2  8
5 a  z  + a  z  - a  z | 
| In[18]:= | Kauffman[Knot[10, 116]][a, z] | 
| Out[18]=   |                                       2
   z              3      5      2   z       2  2    4  2      6  2
 1 - - - 3 a z - 3 a  z - a  z - z  + -- - 3 a  z  + a  z  + 2 a  z  + 
    a                                 2
                                    a
    3                                                      4
 6 z          3       3  3      5  3      7  3      4   2 z
 ---- + 17 a z  + 19 a  z  + 6 a  z  - 2 a  z  + 9 z  - ---- + 
  a                                                       2
                                                         a
                                          5
     2  4    4  4      6  4    8  4   10 z          5       3  5
 19 a  z  - a  z  - 8 a  z  + a  z  - ----- - 22 a z  - 29 a  z  - 
                                        a
                               6
     5  5      7  5       6   z        2  6      4  6      6  6
 13 a  z  + 4 a  z  - 15 z  + -- - 32 a  z  - 8 a  z  + 8 a  z  + 
                               2
                              a
    7
 4 z         7      3  7       5  7      8       2  8      4  8
 ---- + 3 a z  + 9 a  z  + 10 a  z  + 6 z  + 14 a  z  + 8 a  z  + 
  a
      9      3  9
3 a z  + 3 a  z | 
| In[19]:= | {Vassiliev[2][Knot[10, 116]], Vassiliev[3][Knot[10, 116]]} | 
| Out[19]=   | {0, 0} | 
| In[20]:= | Kh[Knot[10, 116]][q, t] | 
| Out[20]=   | 7    9     1        3        1        5        3       7       5
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + 
 3   q    15  6    13  5    11  5    11  4    9  4    9  3    7  3
 q        q   t    q   t    q   t    q   t    q  t    q  t    q  t
    8       7      8      8     5 t                2      3  2
 ----- + ----- + ---- + ---- + --- + 6 q t + 3 q t  + 5 q  t  + 
  7  2    5  2    5      3      q
 q  t    q  t    q  t   q  t
  3  3      5  3    7  4
q  t  + 3 q  t  + q  t | 
| In[21]:= | ColouredJones[Knot[10, 116], 2][q] | 
| Out[21]=   |        -20    4     4     8    26    20    30    81    46    80
-42 + q    - --- + --- + --- - --- + --- + --- - --- + --- + --- - 
              19    18    17    16    15    14    13    12    11
            q     q     q     q     q     q     q     q     q
 155   52   143   199   27   182   186   12   176   129
 --- + -- + --- - --- + -- + --- - --- - -- + --- - --- + 129 q - 
  10    9    8     7     6    5     4     3    2     q
 q     q    q     q     q    q     q     q    q
     2       3       4       5       6       7      8      9    10
58 q  - 47 q  + 63 q  - 10 q  - 25 q  + 15 q  + 2 q  - 4 q  + q |