The Alexander-Conway Polynomial: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 21: | Line 21: | ||
<!--END--> |
<!--END--> |
||
{{Knot Image|8_18}} |
{{Knot Image|8_18|gif}} |
||
The Alexander polynomial <math>A(K)</math> and the Conway polynomial <math>C(K)</math> of a knot <math>K</math> always satisfy <math>A(K)(t)=C(K)(\sqrt{t}-1/\sqrt{t})</math>. Let us verify this relation for the knot [[8_18]]: |
The Alexander polynomial <math>A(K)</math> and the Conway polynomial <math>C(K)</math> of a knot <math>K</math> always satisfy <math>A(K)(t)=C(K)(\sqrt{t}-1/\sqrt{t})</math>. Let us verify this relation for the knot [[8_18]]: |
Revision as of 12:57, 30 August 2005
(For In[1] see Setup)
|
|
|
8_18 |
The Alexander polynomial and the Conway polynomial of a knot always satisfy . Let us verify this relation for the knot 8_18:
In[4]:=
|
alex = Alexander[Knot[8, 18]][t]
|
Out[4]=
|
-3 5 10 2 3
13 - t + -- - -- - 10 t + 5 t - t
2 t
t
|
In[5]:=
|
Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]
|
Out[5]=
|
-3 5 10 2 3
13 - t + -- - -- - 10 t + 5 t - t
2 t
t
|
The determinant of a knot is . Hence for 8_18 it is
In[6]:=
|
Abs[alex /. t -> -1]
|
Out[6]=
|
45
|
Alternatively (see The Determinant and the Signature):
In[7]:=
|
KnotDet[Knot[8, 18]]
|
Out[7]=
|
45
|
, the (standardly normalized) type 2 Vassiliev invariant of a knot is the coefficient of in its Conway polynomial:
In[8]:=
|
Coefficient[Conway[Knot[8, 18]][z], z^2]
|
Out[8]=
|
1
|
Alternatively (see Finite Type (Vassiliev) Invariants),
In[9]:=
|
Vassiliev[2][Knot[8, 18]]
|
Out[9]=
|
1
|
Sometimes two knots have the same Alexander polynomial but different Alexander ideals. An example is the pair K11a99 and K11a277. They have the same Alexander polynomial, but the second Alexander ideal of the first knot is the whole ring while the second Alexander ideal of the second knot is the smaller ideal generated by and by :
In[10]:=
|
{K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};
|
In[11]:=
|
Alexander[K1] == Alexander[K2]
|
Out[11]=
|
True
|
In[12]:=
|
Alexander[K1, 2][t]
|
Out[12]=
|
{1}
|
In[13]:=
|
Alexander[K2, 2][t]
|
Out[13]=
|
{3, 1 + t}
|
Finally, the Alexander polynomial attains 551 values on the 802 knots known to KnotTheory`
:
In[14]:=
|
Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}
|
Out[14]=
|
{551, 802}
|