In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[8, 20]] |
Out[2]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 12, 6, 13], X[13, 16, 14, 1],
X[9, 14, 10, 15], X[15, 10, 16, 11], X[11, 6, 12, 7], X[2, 8, 3, 7]] |
In[3]:= | GaussCode[Knot[8, 20]] |
Out[3]= | GaussCode[1, -8, 2, -1, -3, 7, 8, -2, -5, 6, -7, 3, -4, 5, -6, 4] |
In[4]:= | DTCode[Knot[8, 20]] |
Out[4]= | DTCode[4, 8, -12, 2, -14, -6, -16, -10] |
In[5]:= | br = BR[Knot[8, 20]] |
Out[5]= | BR[3, {1, 1, 1, -2, -1, -1, -1, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 8} |
In[7]:= | BraidIndex[Knot[8, 20]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[8, 20]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[8, 20]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 3, 4, 1} |
In[10]:= | alex = Alexander[Knot[8, 20]][t] |
Out[10]= | -2 2 2
3 + t - - - 2 t + t
t |
In[11]:= | Conway[Knot[8, 20]][z] |
Out[11]= | 2 4
1 + 2 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 20], Knot[10, 140], Knot[11, NonAlternating, 73],
Knot[11, NonAlternating, 74]} |
In[13]:= | {KnotDet[Knot[8, 20]], KnotSignature[Knot[8, 20]]} |
Out[13]= | {9, 0} |
In[14]:= | Jones[Knot[8, 20]][q] |
Out[14]= | -5 -4 -3 2 1
2 - q + q - q + -- - - - q
2 q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 20]} |
In[16]:= | A2Invariant[Knot[8, 20]][q] |
Out[16]= | -16 -14 -12 2 2 2 -2 4
-q - q - q + -- + -- + -- + q - q
8 6 4
q q q |
In[17]:= | HOMFLYPT[Knot[8, 20]][a, z] |
Out[17]= | 2 4 2 2 2 4 2 2 4
-1 + 4 a - 2 a - z + 4 a z - a z + a z |
In[18]:= | Kauffman[Knot[8, 20]][a, z] |
Out[18]= | 2 4 z 3 5 2 2 2
-1 - 4 a - 2 a + - + 3 a z + 5 a z + 3 a z + 2 z + 6 a z +
a
4 2 3 3 3 5 3 2 4 4 4 5
4 a z - 3 a z - 7 a z - 4 a z - 4 a z - 4 a z + a z +
3 5 5 5 2 6 4 6
2 a z + a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[8, 20]], Vassiliev[3][Knot[8, 20]]} |
Out[19]= | {2, -2} |
In[20]:= | Kh[Knot[8, 20]][q, t] |
Out[20]= | 2 1 1 1 1 1 1 3
- + q + ------ + ----- + ----- + ----- + ----- + --- + q t
q 11 5 7 4 7 3 5 2 3 2 q t
q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[8, 20], 2][q] |
Out[21]= | -15 -14 -13 2 -11 2 2 2 2 -5 2
1 + q - q - q + --- - q - --- + -- - -- + -- + q - -- +
12 10 9 7 6 4
q q q q q q
-3 2 2 2
q + -- - - + q - q
2 q
q |