The Multivariable Alexander Polynomial: Difference between revisions
m (Reverted edits by LetodArlet (Talk); changed back to last version by Drorbn) |
DrorsRobot (talk | contribs) No edit summary |
||
Line 9: | Line 9: | ||
n1 = 2 | |
n1 = 2 | |
||
in = <nowiki>MultivariableAlexander</nowiki> | |
in = <nowiki>MultivariableAlexander</nowiki> | |
||
out= <nowiki>MultivariableAlexander[L][t] returns the multivariable Alexander polynomial |
out= <nowiki>MultivariableAlexander[L][t] returns the multivariable Alexander polynomial |
||
of a link L as a function of the variable t[1], t[2], ..., t[c], where c |
|||
⚫ | |||
is the number of components of L. MultivariableAlexander[L, Program -> prog][t] |
|||
uses the program prog to perform the computation. The currently available |
|||
programs are "MVA1", written by Dan Carney in Toronto in the summer of 2005, |
|||
and the faster "MVA2" (default), written by Jana Archibald in Toronto in 2008-9.</nowiki> | |
|||
about= <nowiki>The multivariable Alexander program "MVA1" was |
|||
⚫ | |||
was written by Jana Archibald in Toronto in 2008-9.</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Line 26: | Line 33: | ||
t[1] -> t1, t[2] -> t2, t[3] -> t4, t[4] -> t3 |
t[1] -> t1, t[2] -> t2, t[3] -> t4, t[4] -> t3 |
||
}</nowiki> | |
}</nowiki> | |
||
out= <nowiki>-t1 - t2 + t1 t2 - t3 + 2 t1 t3 + t2 t3 - t1 t2 t3 - t4 + t1 t4 + |
out= <nowiki>(-t1 - t2 + t1 t2 - t3 + 2 t1 t3 + t2 t3 - t1 t2 t3 - t4 + t1 t4 + |
||
2 t2 t4 - t1 t2 t4 + t3 t4 - t1 t3 t4 - t2 t3 t4 |
2 t2 t4 - t1 t2 t4 + t3 t4 - t1 t3 t4 - t2 t3 t4) / |
||
(Sqrt[t1] Sqrt[t2] Sqrt[t3] Sqrt[t4])</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Line 44: | Line 53: | ||
n = 5 | |
n = 5 | |
||
in = <nowiki>mva - (mva /. {t1->t2, t2->t1})</nowiki> | |
in = <nowiki>mva - (mva /. {t1->t2, t2->t1})</nowiki> | |
||
out= <nowiki>t1 |
out= <nowiki>-((-t1 - t2 + t1 t2 - t3 + t1 t3 + 2 t2 t3 - t1 t2 t3 - t4 + 2 t1 t4 + |
||
t2 t4 - t1 t2 t4 + t3 t4 - t1 t3 t4 - t2 t3 t4) / |
|||
(Sqrt[t1] Sqrt[t2] Sqrt[t3] Sqrt[t4])) + |
|||
(-t1 - t2 + t1 t2 - t3 + 2 t1 t3 + t2 t3 - t1 t2 t3 - t4 + t1 t4 + |
|||
2 t2 t4 - t1 t2 t4 + t3 t4 - t1 t3 t4 - t2 t3 t4) / |
|||
(Sqrt[t1] Sqrt[t2] Sqrt[t3] Sqrt[t4])</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Line 98: | Line 117: | ||
X[19, 4, 20, 5], X[21, 7, 22, 6] |
X[19, 4, 20, 5], X[21, 7, 22, 6] |
||
]][t]</nowiki> | |
]][t]</nowiki> | |
||
out= <nowiki> |
out= <nowiki> 2 |
||
-1 + |
-(((-1 + t[1]) (-1 + t[2]) (1 - 2 t[1] + t[1] - 2 t[2] + 2 t[1] t[2] - |
||
2 2 2 2 2 |
|||
2 t[1] t[2] + t[2] - 2 t[1] t[2] + t[1] t[2] )) / |
|||
3 |
3/2 3/2 |
||
(t[1] t[2] ))</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Line 113: | Line 132: | ||
n = 8 | |
n = 8 | |
||
in = <nowiki>Select[AllLinks[], (MultivariableAlexander[#][t] == mva) &]</nowiki> | |
in = <nowiki>Select[AllLinks[], (MultivariableAlexander[#][t] == mva) &]</nowiki> | |
||
out= <nowiki>{ |
out= <nowiki>{}</nowiki>}} |
||
<!--END--> |
<!--END--> |
||
Revision as of 10:11, 21 April 2009
(For In[1] see Setup)
|
|
L8a21 |
The link L8a21 is symmetric under cyclic permutations of its components but not under interchanging two adjacent components. It is amusing to see how this is reflected in its multivariable Alexander polynomial:
In[3]:=
|
mva = MultivariableAlexander[Link[8, Alternating, 21]][t] /. {
t[1] -> t1, t[2] -> t2, t[3] -> t4, t[4] -> t3
}
|
Out[3]=
|
(-t1 - t2 + t1 t2 - t3 + 2 t1 t3 + t2 t3 - t1 t2 t3 - t4 + t1 t4 +
2 t2 t4 - t1 t2 t4 + t3 t4 - t1 t3 t4 - t2 t3 t4) /
(Sqrt[t1] Sqrt[t2] Sqrt[t3] Sqrt[t4])
|
In[4]:=
|
mva - (mva /. {t1->t2, t2->t3, t3->t4, t4->t1})
|
Out[4]=
|
0
|
In[5]:=
|
mva - (mva /. {t1->t2, t2->t1})
|
Out[5]=
|
-((-t1 - t2 + t1 t2 - t3 + t1 t3 + 2 t2 t3 - t1 t2 t3 - t4 + 2 t1 t4 +
t2 t4 - t1 t2 t4 + t3 t4 - t1 t3 t4 - t2 t3 t4) /
(Sqrt[t1] Sqrt[t2] Sqrt[t3] Sqrt[t4])) +
(-t1 - t2 + t1 t2 - t3 + 2 t1 t3 + t2 t3 - t1 t2 t3 - t4 + t1 t4 +
2 t2 t4 - t1 t2 t4 + t3 t4 - t1 t3 t4 - t2 t3 t4) /
(Sqrt[t1] Sqrt[t2] Sqrt[t3] Sqrt[t4])
|
But notice the funny labelling of the components! At the moment there is no way to tell MultivariableAlexander
which variable is to be associated with what variable so MultivariableAlexander
chooses an arbitrary ordering of tha variables. Hence we had to rename t[3]
to be t4
and t[4]
to be t3
.
(To be precise, MultivariableAlexander
orders the components so that its output would be lexicographically minimal among all possible orderings. This way it is at least guaranteed that different presentations for the same link will yield the same output for MultivariableAlexander
.)
Links with Vanishing Multivariable Alexander Polynomial
There are 11 links with up to 11 crossings whose multivariable Alexander polynomial is . Here they are:
In[6]:=
|
Select[AllLinks[], (MultivariableAlexander[#][t] == 0) &]
|
Out[6]=
|
{Link[9, NonAlternating, 27], Link[10, NonAlternating, 32],
Link[10, NonAlternating, 36], Link[10, NonAlternating, 107],
Link[11, NonAlternating, 244], Link[11, NonAlternating, 247],
Link[11, NonAlternating, 334], Link[11, NonAlternating, 381],
Link[11, NonAlternating, 396], Link[11, NonAlternating, 404],
Link[11, NonAlternating, 406]}
|
L9n27 |
L10n32 |
L10n36 |
L10n107 |
L11n244 |
L11n247 |
L11n334 |
L11n381 |
L11n396 |
L11n404 |
L11n406 |
Dror doesn't understand the multivariable Alexander polynomial well enough to give simple topological reasons for the vanishing of the said polynomial for these knots. (Though see the Talk Page).
Detecting a Link Using the Multivariable Alexander Polynomial
On May 1, 2007 AnonMoos asked Dror if he could identify the link in the figure on the right. So Dror typed:
In[7]:=
|
mva = MultivariableAlexander[L = PD[
X[1, 16, 2, 17], X[3, 15, 4, 14], X[5, 8, 6, 9],
X[7, 21, 8, 20], X[9, 22, 10, 13], X[11, 2, 12, 3],
X[13, 18, 14, 19], X[15, 12, 16, 1], X[17, 11, 18, 10],
X[19, 4, 20, 5], X[21, 7, 22, 6]
]][t]
|
Out[7]=
|
2
-(((-1 + t[1]) (-1 + t[2]) (1 - 2 t[1] + t[1] - 2 t[2] + 2 t[1] t[2] -
2 2 2 2 2
2 t[1] t[2] + t[2] - 2 t[1] t[2] + t[1] t[2] )) /
3/2 3/2
(t[1] t[2] ))
|
In[8]:=
|
Select[AllLinks[], (MultivariableAlexander[#][t] == mva) &]
|
Out[8]=
|
{}
|
And just to be sure,
In[9]:=
|
{Jones[L][q], Jones[Link[11, Alternating, 289]][q]}
|
Out[9]=
|
-(17/2) 4 8 12 16 18 17 15
{q - ----- + ----- - ----- + ---- - ---- + ---- - ---- +
15/2 13/2 11/2 9/2 7/2 5/2 3/2
q q q q q q q
10 3/2 5/2
------- - 7 Sqrt[q] + 3 q - q ,
Sqrt[q]
-(5/2) 3 7 3/2 5/2
-q + ---- - ------- + 10 Sqrt[q] - 15 q + 17 q -
3/2 Sqrt[q]
q
7/2 9/2 11/2 13/2 15/2 17/2
18 q + 16 q - 12 q + 8 q - 4 q + q }
|
Thus the mystery link is the mirror image of L11a289.