The Determinant and the Signature: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 69: Line 69:


{{Knot Image|K11n116|gif}}
{{Knot Image|K11n116|gif}}

<gallery>
Image:10_124.gif|[[10_124]]
Image:BigCirc_symbol.gif|BigCirc_symbol.gif
Image:overcrossing_symbol.gif|overcrossing_symbol.gif
Image:undercrossing_symbol.gif|undercrossing_symbol.gif
Image:slashoverback_symbol.gif|slashoverback_symbol.gif
Image:backoverslash_symbol.gif|backoverslash_symbol.gif
Image:hsmoothing_symbol.gif|hsmoothing_symbol.gif
Image:vsmoothing_symbol.gif|vsmoothing_symbol.gif
</gallery>

Revision as of 06:43, 3 September 2005


(For In[1] see Setup)

In[1]:= ?KnotDet
KnotDet[K] returns the determinant of a knot K.
In[2]:= ?KnotSignature
KnotSignature[K] returns the signature of a knot K.

Thus, for example, the knots 5_1 and 10_132 have the same determinant (and even the same Alexander and Jones polynomials), but different signatures:

5 1.gif
5_1
10 132.gif
10_132
In[3]:= KnotDet /@ {Knot[5, 1], Knot[10, 132]}
Out[3]= {5, 5}
In[4]:= { Equal @@ (Jones[#][q]& /@ {Knot[5, 1], Knot[10, 132]}), Equal @@ (Alexander[#][t]& /@ {Knot[5, 1], Knot[10, 132]}) }
Out[4]= {True, True}
In[5]:= KnotSignature /@ {Knot[5, 1], Knot[10, 132]}
Out[5]= {-4, 0}

In August 2005 somebody emailed Dror a question about knot colouring, which amounted to "find the first knot (other than the unknot) whose determinant is . So on September 2nd Dror typed

In[6]:= Select[AllKnots[], Abs[KnotDet[#]] == 1 &]
Out[6]= {Knot[0, 1], Knot[10, 124], Knot[10, 153], Knot[11, NonAlternating, 34], Knot[11, NonAlternating, 42], Knot[11, NonAlternating, 49], Knot[11, NonAlternating, 116]}

Hence the first few knots that are not -colourable for any are 10_124, 10_153, K11n34, K11n42, K11n49 and K11n116.

K11n116.gif
K11n116