The Multivariable Alexander Polynomial: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 6: | Line 6: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpAndAbout| |
{{HelpAndAbout| |
||
n = |
n = 1 | |
||
n1 = |
n1 = 2 | |
||
in = <nowiki>MultivariableAlexander</nowiki> | |
in = <nowiki>MultivariableAlexander</nowiki> | |
||
out= <nowiki>MultivariableAlexander[L][t] returns the multivariable Alexander polynomial of a link L as a function of the variable t[1], t[2], ..., t[c], where c is the number of components of L.</nowiki> | |
out= <nowiki>MultivariableAlexander[L][t] returns the multivariable Alexander polynomial of a link L as a function of the variable t[1], t[2], ..., t[c], where c is the number of components of L.</nowiki> | |
||
Line 22: | Line 22: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 3 | |
||
in = <nowiki>mva = MultivariableAlexander[Link[8, Alternating, 21]][t] /. { |
in = <nowiki>mva = MultivariableAlexander[Link[8, Alternating, 21]][t] /. { |
||
t[1] -> t1, t[2] -> t2, t[3] -> t4, t[4] -> t3 |
t[1] -> t1, t[2] -> t2, t[3] -> t4, t[4] -> t3 |
||
Line 34: | Line 34: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 4 | |
||
in = <nowiki>mva - (mva /. {t1->t2, t2->t3, t3->t4, t4->t1})</nowiki> | |
in = <nowiki>mva - (mva /. {t1->t2, t2->t3, t3->t4, t4->t1})</nowiki> | |
||
out= <nowiki>0</nowiki>}} |
out= <nowiki>0</nowiki>}} |
||
Line 42: | Line 42: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 5 | |
||
in = <nowiki>mva - (mva /. {t1->t2, t2->t1})</nowiki> | |
in = <nowiki>mva - (mva /. {t1->t2, t2->t1})</nowiki> | |
||
out= <nowiki>t1 t3 - t2 t3 - t1 t4 + t2 t4</nowiki>}} |
out= <nowiki>t1 t3 - t2 t3 - t1 t4 + t2 t4</nowiki>}} |
||
Line 58: | Line 58: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 6 | |
||
in = <nowiki>Select[AllLinks[], (MultivariableAlexander[#][t] == 0) &]</nowiki> | |
in = <nowiki>Select[AllLinks[], (MultivariableAlexander[#][t] == 0) &]</nowiki> | |
||
out= <nowiki>{Link[9, NonAlternating, 27], Link[10, NonAlternating, 32], |
out= <nowiki>{Link[9, NonAlternating, 27], Link[10, NonAlternating, 32], |
||
Line 88: | Line 88: | ||
X[17, 11, 18, 10], X[19, 4, 20, 5], X[21, 7, 22, 6] |
X[17, 11, 18, 10], X[19, 4, 20, 5], X[21, 7, 22, 6] |
||
]][t]$$--> |
]][t]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut| |
|||
n = 7 | |
|||
in = <nowiki>mva = MultivariableAlexander[L = PD[ |
|||
X[1, 16, 2, 17], X[3, 15, 4, 14], X[5, 8, 6, 9], X[7, 21, 8, 20], |
|||
X[9, 22, 10, 13], X[11, 2, 12, 3], X[13, 18, 14, 19], X[15, 12, 16, 1], |
|||
X[17, 11, 18, 10], X[19, 4, 20, 5], X[21, 7, 22, 6] |
|||
]][t]</nowiki> | |
|||
out= <nowiki> 2 3 2 |
|||
-1 + 3 t[1] - 3 t[1] + t[1] + 3 t[2] - 7 t[1] t[2] + 7 t[1] t[2] - |
|||
3 2 2 2 2 |
|||
3 t[1] t[2] - 3 t[2] + 7 t[1] t[2] - 7 t[1] t[2] + |
|||
3 2 3 3 2 3 3 3 |
|||
3 t[1] t[2] + t[2] - 3 t[1] t[2] + 3 t[1] t[2] - t[1] t[2]</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$Select[AllLinks[], (MultivariableAlexander[#][t] == mva) &]$$--> |
<!--$$Select[AllLinks[], (MultivariableAlexander[#][t] == mva) &]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut| |
|||
n = 8 | |
|||
in = <nowiki>Select[AllLinks[], (MultivariableAlexander[#][t] == mva) &]</nowiki> | |
|||
out= <nowiki>{Link[11, Alternating, 289]}</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Line 96: | Line 117: | ||
<!--$${Jones[L][q], Jones[Link[11, Alternating, 289]][q]]$$--> |
<!--$${Jones[L][q], Jones[Link[11, Alternating, 289]][q]]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut| |
|||
n = 9 | |
|||
in = <nowiki>{Jones[L][q], Jones[Link[11, Alternating, 289]][q]]</nowiki> | |
|||
out= <nowiki>$Failed</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Revision as of 15:08, 3 May 2007
(For In[1] see Setup)
|
|
L8a21 |
The link L8a21 is symmetric under cyclic permutations of its components but not under interchanging two adjacent components. It is amusing to see how this is reflected in its multivariable Alexander polynomial:
In[3]:=
|
mva = MultivariableAlexander[Link[8, Alternating, 21]][t] /. {
t[1] -> t1, t[2] -> t2, t[3] -> t4, t[4] -> t3
}
|
Out[3]=
|
-t1 - t2 + t1 t2 - t3 + 2 t1 t3 + t2 t3 - t1 t2 t3 - t4 + t1 t4 +
2 t2 t4 - t1 t2 t4 + t3 t4 - t1 t3 t4 - t2 t3 t4
|
In[4]:=
|
mva - (mva /. {t1->t2, t2->t3, t3->t4, t4->t1})
|
Out[4]=
|
0
|
In[5]:=
|
mva - (mva /. {t1->t2, t2->t1})
|
Out[5]=
|
t1 t3 - t2 t3 - t1 t4 + t2 t4
|
But notice the funny labelling of the components! At the moment there is no way to tell MultivariableAlexander
which variable is to be associated with what variable so MultivariableAlexander
chooses an arbitrary ordering of tha variables. Hence we had to rename t[3]
to be t4
and t[4]
to be t3
.
(To be precise, MultivariableAlexander
orders the components so that its output would be lexicographically minimal among all possible orderings. This way it is at least guaranteed that different presentations for the same link will yield the same output for MultivariableAlexander
.)
Links with Vanishing Multivariable Alexander Polynomial
There are 11 links with up to 11 crossings whose multivariable Alexander polynomial is . Here they are:
In[6]:=
|
Select[AllLinks[], (MultivariableAlexander[#][t] == 0) &]
|
Out[6]=
|
{Link[9, NonAlternating, 27], Link[10, NonAlternating, 32],
Link[10, NonAlternating, 36], Link[10, NonAlternating, 107],
Link[11, NonAlternating, 244], Link[11, NonAlternating, 247],
Link[11, NonAlternating, 334], Link[11, NonAlternating, 381],
Link[11, NonAlternating, 396], Link[11, NonAlternating, 404],
Link[11, NonAlternating, 406]}
|
L9n27 |
L10n32 |
L10n36 |
L10n107 |
L11n244 |
L11n247 |
L11n334 |
L11n381 |
L11n396 |
L11n404 |
L11n406 |
Dror doesn't understand the multivariable Alexander polynomial well enough to give simple topological reasons for the vanishing of the said polynomial for these knots. (Though see the Talk Page).
Detecting a Link Using the Multivariable Alexander Polynomial
On May 1, 2007 AnonMoos asked Dror if he could identify the link in the figure on the right. So Dror typed:
In[7]:=
|
mva = MultivariableAlexander[L = PD[
X[1, 16, 2, 17], X[3, 15, 4, 14], X[5, 8, 6, 9], X[7, 21, 8, 20],
X[9, 22, 10, 13], X[11, 2, 12, 3], X[13, 18, 14, 19], X[15, 12, 16, 1],
X[17, 11, 18, 10], X[19, 4, 20, 5], X[21, 7, 22, 6]
]][t]
|
Out[7]=
|
2 3 2
-1 + 3 t[1] - 3 t[1] + t[1] + 3 t[2] - 7 t[1] t[2] + 7 t[1] t[2] -
3 2 2 2 2
3 t[1] t[2] - 3 t[2] + 7 t[1] t[2] - 7 t[1] t[2] +
3 2 3 3 2 3 3 3
3 t[1] t[2] + t[2] - 3 t[1] t[2] + 3 t[1] t[2] - t[1] t[2]
|
In[8]:=
|
Select[AllLinks[], (MultivariableAlexander[#][t] == mva) &]
|
Out[8]=
|
{Link[11, Alternating, 289]}
|
And just to be sure,
In[9]:=
|
{Jones[L][q], Jones[Link[11, Alternating, 289]][q]]
|
Out[9]=
|
$Failed
|
Thus the mystery link is L11a289.