Three Dimensional Invariants: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 52: Line 52:
<!--END-->
<!--END-->


{{Knot Image Quadruple|9_10|gif|9_13|gif|9_35|gif|9_38|gif}}
<gallery>
|9_10.gif|[[9_10]]
|9_13.gif|[[9_13]]
|9_35.gif|[[9_35]]
|9_38.gif|[[9_38]]
</gallery>


<!--$$?ThreeGenus$$-->
<!--$$?ThreeGenus$$-->
Line 150: Line 145:
<!--END-->
<!--END-->



<gallery>
{{Knot Image Quadruple|9_24|gif|9_28|gif|9_30|gif|9_34|gif}}
|9_24.gif|[[9_24]]
|9_28.gif|[[9_28]]
|9_30.gif|[[9_30]]
|9_34.gif|[[9_34]]
</gallery>


<!--$$Alexander[#][t]& /@ Ks$$-->
<!--$$Alexander[#][t]& /@ Ks$$-->

Revision as of 03:39, 3 September 2005


(For In[1] see Setup)

In[1]:= ?SymmetryType
SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral.
In[2]:= SymmetryType::about
The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

The unknotting number of a knot is the minimal number of crossing changes needed in order to unknot .

In[3]:= ?UnknottingNumber
UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.
In[4]:= UnknottingNumber::about
The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.


Of the 512 knots whose unknotting number is known to KnotTheory`, 197 have unknotting number 1, 247 have unknotting number 2, 54 have unknotting number 3, 12 have unknotting number 4 and 1 has unknotting number 5:

In[5]:= Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]
Out[5]= u[0] + 197 u[1] + 247 u[2] + 54 u[3] + 12 u[4] + u[5]

There are 4 knots with up to 9 crossings whose unknotting number is unknown:

In[6]:= Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List & ]
Out[6]= {Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]}
9 10.gif
9_10
9 13.gif
9_13
9 35.gif
9_35
9 38.gif
9_38
In[7]:= ?ThreeGenus
ThreeGenus[K] returns the 3-genus of the knot K, if known to KnotTheory`.
In[8]:= ThreeGenus::about
The 3-genus data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

The bridge index' of a knot is the minimal number of local maxima (or local minima) in a generic smooth embedding of in .

In[9]:= ?BridgeIndex
BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`.
In[10]:= BridgeIndex::about
The bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

An often studied class of knots is the class of 2-bridge knots, knots whose bridge index is 2. Of the 49 9-crossings knots, 24 are 2-bridge:

In[11]:= Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]
Out[11]= {Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5], Knot[9, 6], Knot[9, 7], Knot[9, 8], Knot[9, 9], Knot[9, 10], Knot[9, 11], Knot[9, 12], Knot[9, 13], Knot[9, 14], Knot[9, 15], Knot[9, 17], Knot[9, 18], Knot[9, 19], Knot[9, 20], Knot[9, 21], Knot[9, 23], Knot[9, 26], Knot[9, 27], Knot[9, 31]}

The super bridge index of a knot is the minimal number, in a generic smooth embedding of in , of the maximal number of local maxima (or local minima) in a rigid rotation of that projection.

In[12]:= ?SuperBridgeIndex
SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.
In[13]:= SuperBridgeIndex::about
The super bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
In[14]:= ?NakanishiIndex
NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`.
In[15]:= NakanishiIndex::about
The Nakanishi index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
In[16]:= Profile[K_] := Profile[ SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K] ]
In[17]:= Profile[Knot[9,24]]
Out[17]= Profile[Reversible, 1, 3, 3, {4, 6}, 1]
In[18]:= Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]
Out[18]= {Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]}


9 24.gif
9_24
9 28.gif
9_28
9 30.gif
9_30
9 34.gif
9_34
In[19]:= Alexander[#][t]& /@ Ks
Out[19]= -3 5 10 2 3 {13 - t + -- - -- - 10 t + 5 t - t , 2 t t -3 5 12 2 3 -15 + t - -- + -- + 12 t - 5 t + t , 2 t t -3 5 12 2 3 17 - t + -- - -- - 12 t + 5 t - t , 2 t t -3 6 16 2 3 23 - t + -- - -- - 16 t + 6 t - t } 2 t t