Three Dimensional Invariants: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
(22 intermediate revisions by 6 users not shown)
Line 2: Line 2:


{{Startup Note}}
{{Startup Note}}

====Symmetry Type====


<!--$$?SymmetryType$$-->
<!--$$?SymmetryType$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
{{HelpAndAbout|
n = 1 |
n = 2 |
n1 = 2 |
n1 = 3 |
in = <nowiki>SymmetryType</nowiki> |
in = <nowiki>SymmetryType</nowiki> |
out= <nowiki>SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral.</nowiki> |
out= <nowiki>SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral.</nowiki> |
Line 17: Line 19:
A knot is called "fully amphicheiral" if it is equal to its inverse and also to its mirror. The first knot with this property is
A knot is called "fully amphicheiral" if it is equal to its inverse and also to its mirror. The first knot with this property is


<!--$$Select[AllKnots[], (SymmetryType[#] == FullyAmphicheiral) &, 1]$$-->
<!--$$Select[AllKnots[],
(SymmetryType[#] == FullyAmphicheiral) &, 1]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 4 |
in = <nowiki>Select[AllKnots[],
(SymmetryType[#] == FullyAmphicheiral) &, 1]</nowiki> |
out= <nowiki>{Knot[4, 1]}</nowiki>}}
<!--END-->
<!--END-->


A knot is called "reversible" if it is equal to its inverse yet it different from its mirror (and hence also from the inverse of its mirror). Many knots have this property; indeed, the first one is:
A knot is called "reversible" if it is equal to its inverse yet it different from its mirror (and hence also from the inverse of its mirror). Many knots have this property; indeed, the first one is:


<!--$$Select[AllKnots[], (SymmetryType[#] == Reversible) &, 1]$$-->
<!--$$Select[AllKnots[],
(SymmetryType[#] == Reversible) &, 1]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 5 |
in = <nowiki>Select[AllKnots[],
(SymmetryType[#] == Reversible) &, 1]</nowiki> |
out= <nowiki>{Knot[3, 1]}</nowiki>}}
<!--END-->
<!--END-->


Line 29: Line 45:
A knot is called "negative amphicheiral" if it is different from its inverse and its mirror, yet it is equal to the inverse of its mirror. The first knot with this property is
A knot is called "negative amphicheiral" if it is different from its inverse and its mirror, yet it is equal to the inverse of its mirror. The first knot with this property is


<!--$$Select[AllKnots[], (SymmetryType[#] == NegativeAmphicheiral) &, 1]$$-->
<!--$$Select[AllKnots[],
(SymmetryType[#] == NegativeAmphicheiral) &, 1]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 6 |
in = <nowiki>Select[AllKnots[],
(SymmetryType[#] == NegativeAmphicheiral) &, 1]</nowiki> |
out= <nowiki>{Knot[8, 17]}</nowiki>}}
<!--END-->
<!--END-->


Finally, if a knot is different from its inverse, its mirror and from the inverse of its mirror, it is "chiral". The first such knot is
Finally, if a knot is different from its inverse, its mirror and from the inverse of its mirror, it is "chiral". The first such knot is


<!--$$Select[AllKnots[], (SymmetryType[#] == Chiral) &, 1]$$-->
<!--$$Select[AllKnots[],
(SymmetryType[#] == Chiral) &, 1]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 7 |
in = <nowiki>Select[AllKnots[],
(SymmetryType[#] == Chiral) &, 1]</nowiki> |
out= <nowiki>{Knot[9, 32]}</nowiki>}}
<!--END-->
<!--END-->


Line 40: Line 70:


<!--$$Plus @@ (SymmetryType /@ Rest[AllKnots[]])$$-->
<!--$$Plus @@ (SymmetryType /@ Rest[AllKnots[]])$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 8 |
in = <nowiki>Plus @@ (SymmetryType /@ Rest[AllKnots[]])</nowiki> |
out= <nowiki>216 Chiral + 13 FullyAmphicheiral + 7 NegativeAmphicheiral +
565 Reversible</nowiki>}}
<!--END-->
<!--END-->

{{Knot Image Quadruple|4_1|gif|3_1|gif|8_17|gif|9_32|gif}}

====Unknotting Number====


The ''unknotting number'' of a knot <math>K</math> is the minimal number of crossing changes needed in order to unknot <math>K</math>.
The ''unknotting number'' of a knot <math>K</math> is the minimal number of crossing changes needed in order to unknot <math>K</math>.
Line 47: Line 88:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
{{HelpAndAbout|
n = 3 |
n = 9 |
n1 = 4 |
n1 = 10 |
in = <nowiki>UnknottingNumber</nowiki> |
in = <nowiki>UnknottingNumber</nowiki> |
out= <nowiki>UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.</nowiki> |
out= <nowiki>UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.</nowiki> |
Line 61: Line 102:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 5 |
n = 11 |
in = <nowiki>Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]</nowiki> |
in = <nowiki>Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]</nowiki> |
out= <nowiki>u[0] + 197 u[1] + 247 u[2] + 54 u[3] + 12 u[4] + u[5]</nowiki>}}
out= <nowiki>u[0] + 197 u[1] + 247 u[2] + 54 u[3] + 12 u[4] + u[5]</nowiki>}}
Line 74: Line 115:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 6 |
n = 12 |
in = <nowiki>Select[AllKnots[],
in = <nowiki>Select[AllKnots[],
Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &
Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &
Line 82: Line 123:


{{Knot Image Quadruple|9_10|gif|9_13|gif|9_35|gif|9_38|gif}}
{{Knot Image Quadruple|9_10|gif|9_13|gif|9_35|gif|9_38|gif}}

====3-Genus====

A Seifert surface for a knot <math>K \subset S^3</math> is a compact oriented surface <math>L \subset S^3</math>
with boundary <math>\partial L=K</math>. Seifert surfaces exist, but are not unique. The [http://www.win.tue.nl/~vanwijk/seifertview/ SeifertView programme] is a visual implementation of the algorithm of Seifert (1934) for
the construction of a Seifert surface from a knot projection. The 3-genus of a knot is the minimal genus of a
Seifert surface for that knot.



<!--$$?ThreeGenus$$-->
<!--$$?ThreeGenus$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
{{HelpAndAbout|
n = 7 |
n = 13 |
n1 = 8 |
n1 = 14 |
in = <nowiki>ThreeGenus</nowiki> |
in = <nowiki>ThreeGenus</nowiki> |
out= <nowiki>ThreeGenus[K] returns the 3-genus of the knot K, if known to KnotTheory`.</nowiki> |
out= <nowiki>ThreeGenus[K] returns the 3-genus of the knot K or a list of the form {lower bound, upper bound}.</nowiki> |
about= <nowiki>The 3-genus data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.</nowiki>}}
about= <nowiki>The 3-genus program was written by Jake Rasmussen of Princeton University. The program tries to compute the highest nonvanishing group in the knot Floer homology, using Ozsvath and Szabo's version of the Kauffman state model.</nowiki>}}
<!--END-->
<!--END-->

The highest 3-genus of the knots known to <tt>KnotTheory`</tt> is <math>5</math>, and there is only one knot with up to 11 crossings whose 3-genus is 5:

<!--$$Max[ThreeGenus /@ AllKnots[]]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 15 |
in = <nowiki>Max[ThreeGenus /@ AllKnots[]]</nowiki> |
out= <nowiki>5</nowiki>}}
<!--END-->

<!--$$Select[AllKnots[], ThreeGenus[#] == 5 &]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 16 |
in = <nowiki>Select[AllKnots[], ThreeGenus[#] == 5 &]</nowiki> |
out= <nowiki>{Knot[11, Alternating, 367]}</nowiki>}}
<!--END-->

{{Knot Image Pair|K11a367|gif|T(11,2)|jpg}}

([[K11a367]] is, of couse, also known as the torus knot [[T(11,2)]]).

The Conway knot [[K11n34]] is the closure of the braid <tt>BR[4, {1, 1, 2, -3, 2, 1, -3, -2, -2, -3, -3}]</tt>. Let us compute its 3-genus and compare it with the 3-genus of its mutant companion, the Kinoshita-Terasaka knot [[K11n42]]:

<!--$$ThreeGenus[BR[4, {1, 1, 2, -3, 2, 1, -3, -2, -2, -3, -3}]]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 17 |
in = <nowiki>ThreeGenus[BR[4, {1, 1, 2, -3, 2, 1, -3, -2, -2, -3, -3}]]</nowiki> |
out= <nowiki>3</nowiki>}}
<!--END-->

<!--$$ThreeGenus[Knot[11, NonAlternating, 42]]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 18 |
in = <nowiki>ThreeGenus[Knot[11, NonAlternating, 42]]</nowiki> |
out= <nowiki>2</nowiki>}}
<!--END-->

{{Knot Image Pair|K11n34|gif|K11n42|gif}}

====Bridge Index====


The ''bridge index' of a knot <math>K</math> is the minimal number of local maxima (or local minima) in a generic smooth embedding of <math>K</math> in <math>{\mathbf R}^3</math>.
The ''bridge index' of a knot <math>K</math> is the minimal number of local maxima (or local minima) in a generic smooth embedding of <math>K</math> in <math>{\mathbf R}^3</math>.
Line 98: Line 191:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
{{HelpAndAbout|
n = 9 |
n = 19 |
n1 = 10 |
n1 = 20 |
in = <nowiki>BridgeIndex</nowiki> |
in = <nowiki>BridgeIndex</nowiki> |
out= <nowiki>BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`.</nowiki> |
out= <nowiki>BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`.</nowiki> |
Line 105: Line 198:
<!--END-->
<!--END-->


An often studied class of knots is the class of 2-bridge knots, knots whose bridge index is 2. Of the 49 9-crossings knots, 24 are 2-bridge:
An often studied class of knots is the class of 2-bridge knots, knots whose bridge index is 2. Of the 49 prime 9-crossings knots, 24 are 2-bridge:


<!--$$Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]$$-->
<!--$$Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 11 |
n = 21 |
in = <nowiki>Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]</nowiki> |
in = <nowiki>Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]</nowiki> |
out= <nowiki>{Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5],
out= <nowiki>{Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5],
Line 122: Line 215:
Knot[9, 23], Knot[9, 26], Knot[9, 27], Knot[9, 31]}</nowiki>}}
Knot[9, 23], Knot[9, 26], Knot[9, 27], Knot[9, 31]}</nowiki>}}
<!--END-->
<!--END-->

====Super Bridge Index====


The ''super bridge index'' of a knot <math>K</math> is the minimal number, in a generic smooth embedding of <math>K</math> in <math>{\mathbf R}^3</math>, of the maximal number of local maxima (or local minima) in a rigid rotation of that projection.
The ''super bridge index'' of a knot <math>K</math> is the minimal number, in a generic smooth embedding of <math>K</math> in <math>{\mathbf R}^3</math>, of the maximal number of local maxima (or local minima) in a rigid rotation of that projection.
Line 128: Line 223:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
{{HelpAndAbout|
n = 12 |
n = 22 |
n1 = 13 |
n1 = 23 |
in = <nowiki>SuperBridgeIndex</nowiki> |
in = <nowiki>SuperBridgeIndex</nowiki> |
out= <nowiki>SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.</nowiki> |
out= <nowiki>SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.</nowiki> |
about= <nowiki>The super bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.</nowiki>}}
about= <nowiki>The super bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.</nowiki>}}
<!--END-->
<!--END-->

====Nakanishi Index====


<!--$$?NakanishiIndex$$-->
<!--$$?NakanishiIndex$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
{{HelpAndAbout|
n = 14 |
n = 24 |
n1 = 15 |
n1 = 25 |
in = <nowiki>NakanishiIndex</nowiki> |
in = <nowiki>NakanishiIndex</nowiki> |
out= <nowiki>NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`.</nowiki> |
out= <nowiki>NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`.</nowiki> |
about= <nowiki>The Nakanishi index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.</nowiki>}}
about= <nowiki>The Nakanishi index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.</nowiki>}}
<!--END-->
<!--END-->

====Synthesis====


<!--$$Profile[K_] := Profile[
<!--$$Profile[K_] := Profile[
Line 151: Line 250:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{In|
{{In|
n = 16 |
n = 26 |
in = <nowiki>Profile[K_] := Profile[
in = <nowiki>Profile[K_] := Profile[
SymmetryType[K], UnknottingNumber[K], ThreeGenus[K],
SymmetryType[K], UnknottingNumber[K], ThreeGenus[K],
Line 161: Line 260:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 17 |
n = 27 |
in = <nowiki>Profile[Knot[9,24]]</nowiki> |
in = <nowiki>Profile[Knot[9,24]]</nowiki> |
out= <nowiki>Profile[Reversible, 1, 3, 3, {4, 6}, 1]</nowiki>}}
out= <nowiki>Profile[Reversible, 1, 3, 3, {4, 6}, 1]</nowiki>}}
Line 169: Line 268:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 18 |
n = 28 |
in = <nowiki>Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]</nowiki> |
in = <nowiki>Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]</nowiki> |
out= <nowiki>{Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]}</nowiki>}}
out= <nowiki>{Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]}</nowiki>}}
<!--END-->
<!--END-->



{{Knot Image Quadruple|9_24|gif|9_28|gif|9_30|gif|9_34|gif}}
{{Knot Image Quadruple|9_24|gif|9_28|gif|9_30|gif|9_34|gif}}
Line 180: Line 278:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 19 |
n = 29 |
in = <nowiki>Alexander[#][t]& /@ Ks</nowiki> |
in = <nowiki>Alexander[#][t]& /@ Ks</nowiki> |
out= <nowiki> -3 5 10 2 3
out= <nowiki> -3 5 10 2 3

Latest revision as of 19:49, 18 December 2007


(For In[1] see Setup)

Symmetry Type

In[2]:= ?SymmetryType
SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral.
In[3]:= SymmetryType::about
The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

The inverse of a knot is the knot obtained from it by reversing its parametrization. The mirror of A knot is obtained from by reversing the orientation of the ambient space, or, alternatively, by flipping all the crossings of .

A knot is called "fully amphicheiral" if it is equal to its inverse and also to its mirror. The first knot with this property is

In[4]:= Select[AllKnots[], (SymmetryType[#] == FullyAmphicheiral) &, 1]
Out[4]= {Knot[4, 1]}

A knot is called "reversible" if it is equal to its inverse yet it different from its mirror (and hence also from the inverse of its mirror). Many knots have this property; indeed, the first one is:

In[5]:= Select[AllKnots[], (SymmetryType[#] == Reversible) &, 1]
Out[5]= {Knot[3, 1]}

A knot is called "positive amphicheiral" if it is different from its inverse but equal to its mirror. There are no such knots with up to 11 crossings.

A knot is called "negative amphicheiral" if it is different from its inverse and its mirror, yet it is equal to the inverse of its mirror. The first knot with this property is

In[6]:= Select[AllKnots[], (SymmetryType[#] == NegativeAmphicheiral) &, 1]
Out[6]= {Knot[8, 17]}

Finally, if a knot is different from its inverse, its mirror and from the inverse of its mirror, it is "chiral". The first such knot is

In[7]:= Select[AllKnots[], (SymmetryType[#] == Chiral) &, 1]
Out[7]= {Knot[9, 32]}

It is a amusing to take "symmetry type" statistics on all the prime knots with up to 11 crossings:

In[8]:= Plus @@ (SymmetryType /@ Rest[AllKnots[]])
Out[8]= 216 Chiral + 13 FullyAmphicheiral + 7 NegativeAmphicheiral + 565 Reversible
4 1.gif
4_1
3 1.gif
3_1
8 17.gif
8_17
9 32.gif
9_32

Unknotting Number

The unknotting number of a knot is the minimal number of crossing changes needed in order to unknot .

In[9]:= ?UnknottingNumber
UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.
In[10]:= UnknottingNumber::about
The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.


Of the 512 knots whose unknotting number is known to KnotTheory`, 197 have unknotting number 1, 247 have unknotting number 2, 54 have unknotting number 3, 12 have unknotting number 4 and 1 has unknotting number 5:

In[11]:= Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]
Out[11]= u[0] + 197 u[1] + 247 u[2] + 54 u[3] + 12 u[4] + u[5]

There are 4 knots with up to 9 crossings whose unknotting number is unknown:

In[12]:= Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List & ]
Out[12]= {Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]}
9 10.gif
9_10
9 13.gif
9_13
9 35.gif
9_35
9 38.gif
9_38

3-Genus

A Seifert surface for a knot is a compact oriented surface with boundary . Seifert surfaces exist, but are not unique. The SeifertView programme is a visual implementation of the algorithm of Seifert (1934) for the construction of a Seifert surface from a knot projection. The 3-genus of a knot is the minimal genus of a Seifert surface for that knot.


In[13]:= ?ThreeGenus
ThreeGenus[K] returns the 3-genus of the knot K or a list of the form {lower bound, upper bound}.
In[14]:= ThreeGenus::about
The 3-genus program was written by Jake Rasmussen of Princeton University. The program tries to compute the highest nonvanishing group in the knot Floer homology, using Ozsvath and Szabo's version of the Kauffman state model.

The highest 3-genus of the knots known to KnotTheory` is , and there is only one knot with up to 11 crossings whose 3-genus is 5:

In[15]:= Max[ThreeGenus /@ AllKnots[]]
Out[15]= 5
In[16]:= Select[AllKnots[], ThreeGenus[#] == 5 &]
Out[16]= {Knot[11, Alternating, 367]}
K11a367.gif
K11a367
T(11,2).jpg
T(11,2)

(K11a367 is, of couse, also known as the torus knot T(11,2)).

The Conway knot K11n34 is the closure of the braid BR[4, {1, 1, 2, -3, 2, 1, -3, -2, -2, -3, -3}]. Let us compute its 3-genus and compare it with the 3-genus of its mutant companion, the Kinoshita-Terasaka knot K11n42:

In[17]:= ThreeGenus[BR[4, {1, 1, 2, -3, 2, 1, -3, -2, -2, -3, -3}]]
Out[17]= 3
In[18]:= ThreeGenus[Knot[11, NonAlternating, 42]]
Out[18]= 2
K11n34.gif
K11n34
K11n42.gif
K11n42

Bridge Index

The bridge index' of a knot is the minimal number of local maxima (or local minima) in a generic smooth embedding of in .

In[19]:= ?BridgeIndex
BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`.
In[20]:= BridgeIndex::about
The bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

An often studied class of knots is the class of 2-bridge knots, knots whose bridge index is 2. Of the 49 prime 9-crossings knots, 24 are 2-bridge:

In[21]:= Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]
Out[21]= {Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5], Knot[9, 6], Knot[9, 7], Knot[9, 8], Knot[9, 9], Knot[9, 10], Knot[9, 11], Knot[9, 12], Knot[9, 13], Knot[9, 14], Knot[9, 15], Knot[9, 17], Knot[9, 18], Knot[9, 19], Knot[9, 20], Knot[9, 21], Knot[9, 23], Knot[9, 26], Knot[9, 27], Knot[9, 31]}

Super Bridge Index

The super bridge index of a knot is the minimal number, in a generic smooth embedding of in , of the maximal number of local maxima (or local minima) in a rigid rotation of that projection.

In[22]:= ?SuperBridgeIndex
SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.
In[23]:= SuperBridgeIndex::about
The super bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

Nakanishi Index

In[24]:= ?NakanishiIndex
NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`.
In[25]:= NakanishiIndex::about
The Nakanishi index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

Synthesis

In[26]:= Profile[K_] := Profile[ SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K] ]
In[27]:= Profile[Knot[9,24]]
Out[27]= Profile[Reversible, 1, 3, 3, {4, 6}, 1]
In[28]:= Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]
Out[28]= {Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]}
9 24.gif
9_24
9 28.gif
9_28
9 30.gif
9_30
9 34.gif
9_34
In[29]:= Alexander[#][t]& /@ Ks
Out[29]= -3 5 10 2 3 {13 - t + -- - -- - 10 t + 5 t - t , 2 t t -3 5 12 2 3 -15 + t - -- + -- + 12 t - 5 t + t , 2 t t -3 5 12 2 3 17 - t + -- - -- - 12 t + 5 t - t , 2 t t -3 6 16 2 3 23 - t + -- - -- - 16 t + 6 t - t } 2 t t