Three Dimensional Invariants: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
Line 165: Line 165:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 16 |
n = 17 |
in = <nowiki>Select[AllKnots[], ThreeGenus[#] == 5 &]</nowiki> |
in = <nowiki>ThreeGenus[BR[4, {1, 1, 2, -3, 2, 1, -3, -2, -2, -3, -3}]]</nowiki> |
out= <nowiki>{Knot[11, Alternating, 367]}</nowiki>}}
out= <nowiki>3</nowiki>}}
<!--END-->
<!--END-->


Line 173: Line 173:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 16 |
n = 18 |
in = <nowiki>Select[AllKnots[], ThreeGenus[#] == 5 &]</nowiki> |
in = <nowiki>ThreeGenus[Knot[11, NonAlternating, 42]]</nowiki> |
out= <nowiki>{Knot[11, Alternating, 367]}</nowiki>}}
out= <nowiki>2</nowiki>}}
<!--END-->
<!--END-->


Line 185: Line 185:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
{{HelpAndAbout|
n = 17 |
n = 19 |
n1 = 18 |
n1 = 20 |
in = <nowiki>BridgeIndex</nowiki> |
in = <nowiki>BridgeIndex</nowiki> |
out= <nowiki>BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`.</nowiki> |
out= <nowiki>BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`.</nowiki> |
Line 197: Line 197:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 19 |
n = 21 |
in = <nowiki>Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]</nowiki> |
in = <nowiki>Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]</nowiki> |
out= <nowiki>{Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5],
out= <nowiki>{Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5],
Line 217: Line 217:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
{{HelpAndAbout|
n = 20 |
n = 22 |
n1 = 21 |
n1 = 23 |
in = <nowiki>SuperBridgeIndex</nowiki> |
in = <nowiki>SuperBridgeIndex</nowiki> |
out= <nowiki>SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.</nowiki> |
out= <nowiki>SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.</nowiki> |
Line 229: Line 229:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
{{HelpAndAbout|
n = 22 |
n = 24 |
n1 = 23 |
n1 = 25 |
in = <nowiki>NakanishiIndex</nowiki> |
in = <nowiki>NakanishiIndex</nowiki> |
out= <nowiki>NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`.</nowiki> |
out= <nowiki>NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`.</nowiki> |
Line 244: Line 244:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{In|
{{In|
n = 24 |
n = 26 |
in = <nowiki>Profile[K_] := Profile[
in = <nowiki>Profile[K_] := Profile[
SymmetryType[K], UnknottingNumber[K], ThreeGenus[K],
SymmetryType[K], UnknottingNumber[K], ThreeGenus[K],
Line 254: Line 254:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 25 |
n = 27 |
in = <nowiki>Profile[Knot[9,24]]</nowiki> |
in = <nowiki>Profile[Knot[9,24]]</nowiki> |
out= <nowiki>Profile[Reversible, 1, 3, 3, {4, 6}, 1]</nowiki>}}
out= <nowiki>Profile[Reversible, 1, 3, 3, {4, 6}, 1]</nowiki>}}
Line 262: Line 262:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 26 |
n = 28 |
in = <nowiki>Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]</nowiki> |
in = <nowiki>Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]</nowiki> |
out= <nowiki>{Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]}</nowiki>}}
out= <nowiki>{Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]}</nowiki>}}
Line 272: Line 272:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 27 |
n = 29 |
in = <nowiki>Alexander[#][t]& /@ Ks</nowiki> |
in = <nowiki>Alexander[#][t]& /@ Ks</nowiki> |
out= <nowiki> -3 5 10 2 3
out= <nowiki> -3 5 10 2 3

Revision as of 15:01, 31 January 2006


(For In[1] see Setup)

Symmetry Type

In[2]:= ?SymmetryType
SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral.
In[3]:= SymmetryType::about
The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

The inverse of a knot is the knot obtained from it by reversing its parametrization. The mirror of A knot is obtained from by reversing the orientation of the ambient space, or, alternatively, by flipping all the crossings of .

A knot is called "fully amphicheiral" if it is equal to its inverse and also to its mirror. The first knot with this property is

In[4]:= Select[AllKnots[], (SymmetryType[#] == FullyAmphicheiral) &, 1]
Out[4]= {Knot[4, 1]}

A knot is called "reversible" if it is equal to its inverse yet it different from its mirror (and hence also from the inverse of its mirror). Many knots have this property; indeed, the first one is:

In[5]:= Select[AllKnots[], (SymmetryType[#] == Reversible) &, 1]
Out[5]= {Knot[3, 1]}

A knot is called "positive amphicheiral" if it is different from its inverse but equal to its mirror. There are no such knots with up to 11 crossings.

A knot is called "negative amphicheiral" if it is different from its inverse and its mirror, yet it is equal to the inverse of its mirror. The first knot with this property is

In[6]:= Select[AllKnots[], (SymmetryType[#] == NegativeAmphicheiral) &, 1]
Out[6]= {Knot[8, 17]}

Finally, if a knot is different from its inverse, its mirror and from the inverse of its mirror, it is "chiral". The first such knot is

In[7]:= Select[AllKnots[], (SymmetryType[#] == Chiral) &, 1]
Out[7]= {Knot[9, 32]}

It is a amusing to take "symmetry type" statistics on all the prime knots with up to 11 crossings:

In[8]:= Plus @@ (SymmetryType /@ Rest[AllKnots[]])
Out[8]= 216 Chiral + 13 FullyAmphicheiral + 7 NegativeAmphicheiral + 565 Reversible
4 1.gif
4_1
3 1.gif
3_1
8 17.gif
8_17
9 32.gif
9_32

Unknotting Number

The unknotting number of a knot is the minimal number of crossing changes needed in order to unknot .

In[9]:= ?UnknottingNumber
UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.
In[10]:= UnknottingNumber::about
The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.


Of the 512 knots whose unknotting number is known to KnotTheory`, 197 have unknotting number 1, 247 have unknotting number 2, 54 have unknotting number 3, 12 have unknotting number 4 and 1 has unknotting number 5:

In[11]:= Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]
Out[11]= u[0] + 197 u[1] + 247 u[2] + 54 u[3] + 12 u[4] + u[5]

There are 4 knots with up to 9 crossings whose unknotting number is unknown:

In[12]:= Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List & ]
Out[12]= {Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]}
9 10.gif
9_10
9 13.gif
9_13
9 35.gif
9_35
9 38.gif
9_38

3-Genus

The 3-genus of a knot is the minimal genus of a Seifert surface for that knot.

In[13]:= ?ThreeGenus
ThreeGenus[K] returns the 3-genus of the knot K or a list of the form {lower bound, upper bound}.
In[14]:= ThreeGenus::about
The 3-genus program was written by Jake Rasmussen of Princeton University. The program tries to compute the highest nonvanishing group in the knot Floer homology, using Ozsvath and Szabo's version of the Kauffman state model.

The highest 3-genus of the knots known to KnotTheory` is , and there is only one knot with up to 11 crossings whose 3-genus is 5:

In[15]:= Max[ThreeGenus /@ AllKnots[]]
Out[15]= 5
In[16]:= Select[AllKnots[], ThreeGenus[#] == 5 &]
Out[16]= {Knot[11, Alternating, 367]}
K11a367.gif
K11a367
T(11,2).jpg
T(11,2)

(K11a367 is, of couse, also known as the torus knot T(11,2)).

The Conway knot K11n34 is the closure of the braid BR[4, {1, 1, 2, -3, 2, 1, -3, -2, -2, -3, -3}]. Let us compute its 3-genus and compare it with the 3-genus of its mutant companion, the Kinoshita-Terasaka knot K11n42:

In[17]:= ThreeGenus[BR[4, {1, 1, 2, -3, 2, 1, -3, -2, -2, -3, -3}]]
Out[17]= 3
In[18]:= ThreeGenus[Knot[11, NonAlternating, 42]]
Out[18]= 2

Bridge Index

The bridge index' of a knot is the minimal number of local maxima (or local minima) in a generic smooth embedding of in .

In[19]:= ?BridgeIndex
BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`.
In[20]:= BridgeIndex::about
The bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

An often studied class of knots is the class of 2-bridge knots, knots whose bridge index is 2. Of the 49 prime 9-crossings knots, 24 are 2-bridge:

In[21]:= Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]
Out[21]= {Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5], Knot[9, 6], Knot[9, 7], Knot[9, 8], Knot[9, 9], Knot[9, 10], Knot[9, 11], Knot[9, 12], Knot[9, 13], Knot[9, 14], Knot[9, 15], Knot[9, 17], Knot[9, 18], Knot[9, 19], Knot[9, 20], Knot[9, 21], Knot[9, 23], Knot[9, 26], Knot[9, 27], Knot[9, 31]}

Super Bridge Index

The super bridge index of a knot is the minimal number, in a generic smooth embedding of in , of the maximal number of local maxima (or local minima) in a rigid rotation of that projection.

In[22]:= ?SuperBridgeIndex
SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.
In[23]:= SuperBridgeIndex::about
The super bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

Nakanishi Index

In[24]:= ?NakanishiIndex
NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`.
In[25]:= NakanishiIndex::about
The Nakanishi index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

Synthesis

In[26]:= Profile[K_] := Profile[ SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K] ]
In[27]:= Profile[Knot[9,24]]
Out[27]= Profile[Reversible, 1, 3, 3, {4, 6}, 1]
In[28]:= Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]
Out[28]= {Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]}
9 24.gif
9_24
9 28.gif
9_28
9 30.gif
9_30
9 34.gif
9_34
In[29]:= Alexander[#][t]& /@ Ks
Out[29]= -3 5 10 2 3 {13 - t + -- - -- - 10 t + 5 t - t , 2 t t -3 5 12 2 3 -15 + t - -- + -- + 12 t - 5 t + t , 2 t t -3 5 12 2 3 17 - t + -- - -- - 12 t + 5 t - t , 2 t t -3 6 16 2 3 23 - t + -- - -- - 16 t + 6 t - t } 2 t t